
11 Pre-editing tools ____
Here are a few macros, some of which you might want to use before you actually start the sentence-by-sentence

reading of your text. The idea is that if you can get macros to change a lot of the obvious and repetitious things, you

will be better able to concentrate on the really skilled part of the job – making sure that the text says what it is meant

to say.

The most powerful single macro is FRedit, and there’s only a brief introduction to it in this book – it has its own

documentation. Then this section also covers ways in which you can add typesetting codes to your book (<A>, ,

<C> etc – although this can also be done with FRedit), ways of combining and dividing up the files that form your

book, a macro to create a list of all the acronyms in a file, macros to pull all the tables and/or figures out into a

separate file, and other macros to ‘do things with’ tables, frames and textboxes.

These are then followed by macros that ‘do things globally’ with footnotes and endnotes, bookmarks, comments and

styles. And there’s a miscellany of other things that you might want to do before you start to read the script.

FRedit hint – switch track changes on
On the final (long) chapter of my last job, I forgot to switch on track changes before running FRedit, and I didn't

notice until I got well into the editing. That caused me a lot of hassle because important changes went untracked.

Arrgghhh!

Not any more! FRedit has a facility such that I can add a line at the top of the FRedit list:

| Track = yes

If track changes is off, it opens a window to warn me that it’s off, and it won’t let FRedit go ahead until track changes

is switched on.

FRedit hint – using FRedit on multiple selections
(Video: https://youtu.be/oDst93YCLC0)

I’ve discovered a new Word feature on the Home tab: Home—Editing—Select. This throws up a menu including the

action: Select All Text With Similar Formatting (No Data). Not a snappy title, but if you click, say, in the heading

above, and enact this feature, then it and all the similar level headings will be selected, i.e. all selected at the same

time.

You could then, say, apply a different font colour.

Unfortunately, if you get ambitious and try to run FRedit to make changes to all those selected headings, it doesn’t

work – it only works on the final selection in the document.

So, I added a feature to FRedit (see the FRedit Instruction file for details) so that you could make your multiple

selections, then use the Font window to apply a strikethrough to those selections, and FRedit would then work the

opposite way round from normal, i.e. it would ONLY edit text that had a strikethrough, as opposed to NOT editing

any text that had a strikethrough.

It works, but it’s a bit tortuous! (But see below)

Instead, this macro will do the following, after you have made your multiple selection:

1) Apply ST to the whole text

2) Remove ST from the multiple selection

3) Run FRedit

4) Remove ST from the whole text

Sub FReditSelect()

This macro does the same as the previous macro, but all you have to do is open your FRedit list, click in a heading

(assuming it’s the headings you want to apply the FRedit list to) and run the macro. It does automatically what you

had to do manually above, i.e. within the macro, it does the Select All Text With Similar Formatting.

It’s called ‘FReditHeadingsOnly’ because headings seemed the most likely target for FRedit-ting ‘all similarly

formatted text’, but it can be used for any text. For example, you could edit only the text that’s in Normal style.

Sub FReditHeadingsOnly()

FRedit hint – checking your FRedit list
(Video:youtu.be/Z7cjf446JWM)

It’s all too easy when creating a FRedit list to introduce unintended styles and font size/name changes. They might not

be obvious to the naked eye, so this macro checks the list for any funny styles and font sizes/names. They may be

deliberate on your part, which is fine, but if so just click and move on.

The macro also warns you about lines that don’t have a pad character. That, too, can be deliberate, if you’re using two-

line F&Rs for style changes, but again, at least you’re prompted to check.

The macro starts its checking from the current line, and stops at the first possible problem.

Sub FReditListChecker()

Scripted F&R – simplified version of FRedit
(It’s a bit like a FRedit trainer – a flight simulator for a trainee pilot, though you can actually use it to do some useful

jobs.)

For this simplified version of FRedit, all you need is a list like this, of the words you want to change:

favor|favour

Favor|Favour

color|colour

Color|Colour

center|centre

Center|Centre

That has to be in one Word file, open on screen, then open the file on which to make these global changes; then run

the macro.

That’s it! That’s all you need to know.

(However, if you’re feeling brave and want to try other things, keep going, and I’ll drop in some learning points [LP].)

Copy the following list and paste it into your ‘list’ file. Then find an old file of text to “play with” and then try to

change it by using this list and see what happens:

that|that

which|which

the|the

[LP: Changing something with the same thing has no effect, except to add a highlight.]

Then you could try and see what this does:

http://wordmacrotools.com/macros/F/FReditSelect
http://wordmacrotools.com/macros/F/FReditHeadingsOnly
https://youtu.be/Z7cjf446JWM
http://wordmacrotools.com/macros/F/FReditListChecker

¬the|the

Can you see what that did? It did something that the|the didn’t do.

[LP: The “¬” character says “change text regardless of its case; upper or lower”.]

Still feeling brave? OK, try copy-and-pasting this list:

| Double space to single space

^32^32|^32

| spaced hyphen to spaced en dash

 - | ^=^32

| Double return to single return

^p^p|^p

[LP: The “^32” is exactly equivalent to “ ”, but it’s easier to see! (32 is the ASCII code for a space.)]

[LP: Any line starting with a vertical bar is ignored by the macro.]

[LP: The “^p” is one of many Word codes. For more, click Ctrl-H: Find and Replace — More >> — Special.]

Feeling positively heroic? Then try this:

| A wildcard search for number ranges: hyphen to en dash

~([0-9])-([0-9])|\1^=\2

[LP: The “~” says the rest of this line is a wildcard F&R.]

[LP: If you find wildcards a bit scary, don’t worry, just copy other people’s – see the FRedit library.]

One final thing to try, but this time, switch track changes ON before running the macro:

| Double space to single space

 |^32

| spaced hyphen to spaced en dash

 - | ^=^32

| Double return to single return

^p^p|^p

| A wildcard search for number ranges: hyphen to en dash

~([0-9])-([0-9])|\1^=\2

[LP: Any line with the single strikethrough attribute added will not be tracked, even if track changes is ON.]

Sub FReditSimple()

Scripted F&R – a simple FRedit-like tool
(Video:youtu.be/DfAGD9RCpNQ)

This is an even simpler system than FReditSimple, and is aimed at doing a useful job, very quickly. However, it’s not

aimed at training you to use FRedit, because it has a different way of working.

At the end of the file you want to work on, type a hash (#) followed by two or three blank lines. Select from the hash

to the end of the file and make sure it is in Normal style and pure text. (I use the macro NormaliseText, but I assume

there’s a way of doing it off the toolbar, though I can’t see where, sorry!)

http://wordmacrotools.com/macros/F/FReditSimple
https://youtu.be/DfAGD9RCpNQ

On lines following the hash, you could do things like the following. See if you can guess what each will do, when I

run the macro.

toolbar

FRedit

et al

-ise

-isi-

-our

-ment

The first highlights every occurrence of ‘toolbar’, the next two change the words to italic, but note that the third line

will not do this: “The parapet aligns with the feet along the edge.” it only applies the attribute to ‘et al’ as a separate

pair of words.

Then, it’s highlighting words ending in ‘ise’, and ‘isi’ anywhere in the middle of a word, and ‘our’ and ‘ment’ at the

ends of words.

Other features you can use are bold and font size, and they can be combined:

hello

and I’ve also added strikethrough:

bonjour

so that would stop ‘bonjour’ being thrown up as a spelling error by my spelling macros.

If you want to remove some effect, add an exclamation mark:

!toolbar

!FRedit

!et al

These would (1) remove the highlight and (2 + 3) remove the italic.

One possible application is to check where a word/words occur within a document – and here, I’d advise working on a

copy of the document!

FRedit

toolbar-

(I’ve added the hyphen, so that it also catches ‘toolbars’.) Having run MiniFRedit, you can zoom right out, so that you

can see lots of pages on screen at one go, and the occurrences of FRedit and toolbar will be clear to see.)

Programmer’s extra: If you want to add other attributes, such as superscript, it’s not difficult. Add a line to read the

attribute into this list:

 ' Check the attributes on this item

 myBold = tst.Font.Bold

 myItal = tst.Font.Italic

 mySize = tst.Font.Size

 myStrike = tst.Font.StrikeThrough

 mySuper = tst.Font.Superscript

and the add an item to apply it, such as:

 If myStrike Then

 .Replacement.Font.StrikeThrough = True

 If doUndo Then .Replacement.Font.StrikeThrough = False

 End If

 If mySuper Then

 .Replacement.Font.Superscript= True

 If doUndo Then .Replacement.Font.Superscript= False

 End If

(In fact, I thought I might as well add this anyway! So it now also does sub/superscript and underline!)

Sub MiniFRedit()

IZ to IS spelling and vice versa
(See video: youtu.be/SXmAJrUCZ_I)

The main instructions are different for Mac and PC, so here’s Mac version first:

(N.B. Late addition: if you run these macros from within FRedit, using, say, DoMacro|IStoIZ, you have to be on

hand to click Yes, when it asks if you want to edit the text. I’ve now added an option at the beginning of the macro to

avoid this. This is especially useful if you’re using MultiFileFRedit. To stop the prompt being generated each time

IStoIZ is run then change promptForConfirmation = True into promptForConfirmation = False.)

The following two macros allow you either to highlight words that need changing or to actually change them. When

you run the macro, it asks which you want to do.

MAC VERSION

file:///C:/VirtualAcorn/VirtualRPC-SA/HardDisc4/MyFiles2/WIP/zzzTheBook/tst.Font.Bold
file:///C:/VirtualAcorn/VirtualRPC-SA/HardDisc4/MyFiles2/WIP/zzzTheBook/tst.Font.Italic
file:///C:/VirtualAcorn/VirtualRPC-SA/HardDisc4/MyFiles2/WIP/zzzTheBook/tst.Font.Size
file:///C:/VirtualAcorn/VirtualRPC-SA/HardDisc4/MyFiles2/WIP/zzzTheBook/tst.Font.StrikeThrough
file:///C:/VirtualAcorn/VirtualRPC-SA/HardDisc4/MyFiles2/WIP/zzzTheBook/tst.Font.Superscript
http://wordmacrotools.com/macros/M/MiniFRedit
https://youtu.be/SXmAJrUCZ_I

The lists of exceptions need to be held in files (one for each macro) called ‘IS_words’ and ‘IZ_words’. (And for the

IZIScount macro, you need both.) You can set up each macro so that it automatically loads the relevant file from your

hard disc, but the macro needs to know where on your computer to find it. You therefore have to put the full filename

of the exception file into each macro (and both into the IZIScount macro). To do this, navigate in a Finder window to

the folder (directory) where these two files are held:

To obtain the pathname, first right-click the file:

Then, with this dropdown box visible, depress and hold the option key. ‘Copy’ will become ‘Copy “[filename]” as

Pathname’. Still holding down the option key, click ‘Copy “[filename]” as Pathname’.

The pathname will be copied to your clipboard. Paste it into the line near the beginning of the macro following the line

‘Address where … exceptions file is held’, replacing the pathname that is there at the moment. Suppose the pathname

of my exceptions file is:

C:\VirtualAcorn\VirtualRPC-SA\HardDisc4\MyFiles2\WIP

So now the line near the beginning of the macro:

mySFile = "C:\Documents and Settings\Paul\My Documents\IS_words.docx"

has to be changed to (shaded so you can see what I’ve added):

mySFile = "/Users/Paul/My Documents/Macro stuff/IS_words.docx"

(or whatever it is on your computer).

The two lists of exceptions are among the IS/IZ macros in the TheMacros file.

(Now jump to after the PC version for the final bit...)

PC VERSION

The lists of exceptions need to be held in files (one for each macro) called ‘IS_words’ and ‘IZ_words’. (And for the

IZIScount macro, you need both.) You can set up each macro so that it automatically loads the relevant file from your

hard disc, but the macro needs to know where on your computer to find it. You therefore have to put the full filename

of the exception file into each macro (and both into the IZIScount macro). To do this, navigate to the folder (directory)

where these two files are held:

If you click on the down menu arrow to the right of the line showing the string of folder names, the full path name

appears:

Click Ctrl-C to copy this and add it into the line at the beginning of the macro. Suppose mine is:

C:\VirtualAcorn\VirtualRPC-SA\HardDisc4\MyFiles2\WIP

So now the line at the beginning of the macro:

myFile = "C:\Documents and Settings\Paul\My Documents\IS_words.docx"

has to be changed to (shaded so you can see what I’ve added):

myFile = "C:\VirtualAcorn\VirtualRPC-SA\HardDisc4\MyFiles2\WIP\IS_words.docx"

(or whatever it is on your computer).

Finally for both Mac and PC

The two lists of exceptions are on the website: IS_words IZ_words.

IZ_words

IS_words

If you discover other words that are exceptions, please email them to me so that I can update these as central lists.

I have dated the lists so that you can check if you’ve got the latest version. I’ve put a yellow highlight on the proper

nouns, because they may look a little funny; the macro requires the words to be in lowercase.

N.B. You don’t need words like ‘disabled’ and ‘misapprehension’ in the list (and there are a lot of them!) because the

macro ignores ‘isa’ if it’s too near the beginning of the word.

The IStoIZ macro takes account of the fact that, in UK English, analyse, catalyse, paralyse and hydrolyse keep the ‘ys’

form, but not in US English. It senses what the main language of the text is, and acts accordingly.

You can select the highlight colour at the beginning of the macro:

highlightColour = wdTurquoise

And/or you can select the font colour at the beginning of the macro:

textColour = wdTurquoise

If you don’t want the is/iz words changing in certain parts of the file (e.g. quotations and/or references lists) you can

‘protect’ the text (a) by using the strikethrough font feature (this is the same feature as is used with FRedit) and/or

(b) by specifying the style names using the line near the beginning of the macro: nonoStyles = "Display

Quote,References List", so just include your particular style name(s) in between the quotes.

You don’t have to have the is/iz words both track-changed and highlighted. However, if you do want them both track-

changed and highlighted, change the option line to:

bothTCandHighlight = True

The text of ‘IZ_words’ file is in among the macros on the website.

IZwords

Similarly for the ‘IS_words’ file:

ISwords

You will have to put them each in a Word file and save them with the names ‘IZ_words’ and ‘IS_words’.

The actual macros are:

Sub IZtoIS()

Sub IStoIZ()

German and French quotes
If you try to do a find and replace to change English quotes (“ & ”) with German quotes („ & “) or French quotes (« &

») then you might find the F&Rs don’t work. If so, this is probably because you’ve got the automatic curly quotes

function set.

Three ways round the problem:

1) (Obviously, you could) turn off curly quotes, do the F&Rs, turn curly quotes back on.

http://www.archivepub.co.uk/documents/IZ_words
http://www.archivepub.co.uk/documents/IS_words
http://wordmacrotools.com/macros/I/IZwords
http://wordmacrotools.com/macros/I/ISwords
http://wordmacrotools.com/macros/I/IZtoIS
http://wordmacrotools.com/macros/I/IStoIZ

2) Run the appropriate French or German macro below.

3) Use FRedit:

| German quotes

DoMacro|AutoCurlyQuotesOFF

“|„

”|„

DoMacro|AutoCurlyQuotesON

Or...

| French quotes

DoMacro|AutoCurlyQuotesOFF

“|«

”|»

DoMacro|AutoCurlyQuotesON

But number 3) assumes you’ve got the two macros loaded:

Sub AutoCurlyQuotesOFF()

Sub AutoCurlyQuotesON()

Sub GermanQuotes()

Sub FrenchQuotes()

Ignore this text – apply strikethrough
(Video: https://youtu.be/AGyrZbgoTD0)

For use with FRedit and IStoIZ/IZtoIS, for example, (indeed, many of my macros now use strikethrough to say “Don’t

do <whatever> to this area of text”) this applies the strikethrough attribute to a selected area of text, or rather, it

toggles it, i.e. you can use it to add or remove the strikethrough attribute. However, if you don’t select any text, it

removes the strikethrough attribute from the whole of the current paragraph.

Sub StrikeSingle()

Strikethrough and colour selected text
Adds strikethrough and colour to the currently selected text. (It assumes you have macros ColourPlus and StrikeSingle

already in your Normal template.) If no text is selected, it selects the current paragraph.

Sub StrikeAndColour()

Strikethrough all URLs
This macro applies the strikethrough attribute to all URLs in the text. The idea here is to ensure that no URLs are

edited by FRedit etc.

N.B. If there are URLs it misses, it will be because it contains a character that I haven’t thought of. Please let me

know, and I’ll add it to the list at the beginning of the macro.

Sub StrikeThroughAllURLs()

http://wordmacrotools.com/macros/A/AutoCurlyQuotesOFF
http://wordmacrotools.com/macros/A/AutoCurlyQuotesON
http://wordmacrotools.com/macros/G/GermanQuotes
http://wordmacrotools.com/macros/F/FrenchQuotes
http://wordmacrotools.com/macros/S/StrikeSingle
http://wordmacrotools.com/macros/S/StrikeAndColour
http://wordmacrotools.com/macros/S/StrikeThroughAllURLs

Strikethrough all equations
This macro applies the strikethrough attribute to all equations in the text. The idea here is to ensure that no equations

are edited by FRedit etc.

Sub EquationsStrikeThroughAll()

Strikethrough all code sections
This macro was written for a book where there were many sections of computer code in a particular style, called

“computer_code”. So this macro applies the strikethrough attribute to those sections of text, so that any global F&Rs

executed by FRedit didn’t alter any of the code.

I can’t quite remember now, but it looks as if there were also some lines starting with “//”, which I assume were

comments, in editable English, i.e. they could be edited, so for those, the strikethrough was taken off. Then there were

some lines, starting with “!”, which were also editable, so their strikethrough was also removed.

Sub CodeSegmentProtect()

Highlight certain characters with attributes
(Video: youtu.be/DnG1XCuOUlk)

The idea here is to highlight things like italic commas that you might otherwise miss when reading the text. Here’s an

example text with some funnies:

And/or a temperature of 20°C at a façade, or front panel, of the café – with light at

a wavelength of 5000Å!

x > a2 + b2 − ½ab

y = b2 + c2 – ½bc

and then after running the macro, it will look like this:

And/or a temperature of 20°C at a façade, or front panel, of the café – with light at

a wavelength of 5000Å!

x > a2 + b2 − ½ab

y = b2 + c2 – ½bc

If you want to highlight specific characters regardless of whether they are bold/italic, etc then you can do it easily in

FRedit, e.g. the diacritics:

~[áÁàÀâÂäÄÃãÅåçÇéÉèÈêÊëËíÍìÌîÎñÑóÓòÒôÔöÖõÕøØßúÚùÙûÛüÜýÝÿŸ]|^&

But to highlight, say, only the italic superscripted numbers, as in those equations, or the italic comma after ‘façade’,

then it’s not so easy in FRedit, hence this macro (although it also

You can set up the macro (and you could have, say, two different version of the macro, with slightly different names

and for different purposes/clients) using the variables at the beginning of the macro:

superscriptZeros = wdBrightGreen

italicCommas = wdBrightGreen

boldColons = wdPink

notBoldColons = 0

subSuperscriptSpace = wdGray50

' Just super and subscript numbers in italic

subSuperscriptNumberItalic = wdYellow

http://wordmacrotools.com/macros/E/EquationsStrikeThroughAll
http://wordmacrotools.com/macros/C/CodeSegmentProtect
https://youtu.be/DnG1XCuOUlk

' All numbers in italic

allNumberItalic = wdGray25

' Various symbols - your choice

variousSymbols1 = wdPink

mySymbols1 = "[áÁàÀâÂäÄÃãÅåçÇéÉèÈêÊëËíÍìÌîÎñÑóÓòÒôÔöÖõÕøØßúÚùÙûÛüÜýÝÿŸ/–]"

variousSymbols2 = wdYellow

mySymbols2 = "[=*\>\<+" & ChrW(8722) & "]"

' Various symbols in italic - your choice

' (e.g. parentheses, exclamation mark and ½ symbol = 189)

specificSymbolsInItalic = wdTurquoise

mySymbols3 = "[\(\)\!" & ChrW(189) & "]"

Hopefully this should be reasonable self-explanatory, but the notBoldColons = 0 means don’t highlight the

non-bold colons. (This one is aimed at where you’ve got lists with bold headwords followed by a colon – should that

colon be bold or not? You can highlight the ones that are not as intended.

Sub HighlightCertainCharacters()

Highlight all italic text
This a simple macro to do a find and replace simply to add a highlight to all italic text.

Sub HighlightAllItalic()

Highlight all equations
I come across two types of equations: MathType and Equation Editor. Here’s an example, copied out of a real, live

book:

 at
o

22 CT = and 60𝑜𝐶,

The first is MathType and the second is Equation Editor. (And yes, well spotted, both use superscripted letter-o’s, and

yes, italic in the second case.)

The highlighting you see above is what this macro adds. The point is that, without the highlight it looks like this:

 at
o

22 CT = and 60𝑜𝐶,

(a) it’s not clear that the two use the different equation formats

(b) it’s less obvious that there’s no space in front of ‘and’. (But I don’t know if that matters – do typesetting packages

like InDesign automatically pick up on that sort of thing?)

(In case it’s useful, I’ve added the option to highlight the other method of creating (bits of) equations: Symbol font.

And don’t forget that Symbol font Greek characters can be changed to Unicode characters by using FRedit – see the

FRedit library.)

Sub EquationsHighlightAll()

Highlight all ‘equations’ that are actually now bitmaps
Unfortunately, sometimes ‘equations’ do lose their editableness and become bitmap images.

http://wordmacrotools.com/macros/H/HighlightCertainCharacters
http://wordmacrotools.com/macros/H/HighlightAllItalic
http://wordmacrotools.com/macros/E/EquationsHighlightAll

But before you freak out totally, just check the filetype of the file. Sometimes, I’ve been able to rescue uneditable

equations, where someone has saved a .docx file as the older .doc filetype, which doesn’t support equations in the

same way. So sometimes, if you do a Save As, and change the filetype from ‘Word 97-2003 Document’ to ‘Word

Document’ the equations will jump back to life. Phew!

If not then this macro will highlight all the ‘equations’ that are now actually uneditable bitmap images.

Space out MathType equations in running text
If, having highlighted the MathType equations, you can see that some of them need spaces adding, you can add them

manually, of course, but this macro checks all the MathType equations in the current paragraph and, where necessary,

adds spaces.

In the example, “if the temperature 1 22 C°T = or 2 29 C°T = , at the surface (295KQ =)”, only the first one needs a

space, as the second is next to punctuation, and the third is in parentheses. The macro knows when to add a space and

when not.

Sub SpaceEquationsInPara()

Space out MathType equations in whole text
This does the whole file at one go. (I forgot I’d done this when I wrote the macro above!)

Sub EquationSpacer()

Convert all Equation Editor items to text
In one job, the author used MathType for the actual equations, but Equation Editor in the running text for, e.g. “where

𝑡 is the length of time and 𝑘 is the coefficient of whatever”. So, rightly or wrongly, I decided to convert all the

Equation Editor items to pure text. This macro does that, highlightling them, as it goes; they come out in roman, so

they need to be italicised.

Sub EquationsConvertAll()

Mark all quotations
(Video: youtu.be/PB0hXA_1tRo)

This is a multi-purpose macro that finds all the text in quotation marks (single and/or double) and all displayed text

(i.e. text that has a left margin indent), and marks it by using any or all of:

a) strikethrough (or double strikethrough)

b) highlighting (your choice of colour)

c) font colour (your choice of colour)

The original reason for the macro was that if the quotations are struck through, then FRedit and IStoIZ/IZtoIS will not

then make any changes to them. But then I added the font colouration because, once you’ve used FRedit and

IStoIZ/IZtoIS, you’ll probably want to remove the strikethrough so that you can more easily read the text. If those

quotations are also in a different font colour then you will be able to see which bits of the text have indeed been

protected from the effects of global changes.

Then the other major application of this macro is that you can get it to only mark long quotations, i.e. more than a

certain number of words. This is to enable you to see which quotations ought to be displayed rather than being left

http://wordmacrotools.com/macros/S/SpaceEquationsInPara
http://wordmacrotools.com/macros/E/EquationSpacer
http://wordmacrotools.com/macros/E/EquationsConvertAll
https://youtu.be/PB0hXA_1tRo

inline. This is why I added the option to highlight the quotes because now, as you read through the text, and are alerted

to which are the long quotes, and you can use the macro DisplayQuote. So you just click somewhere in the highlighted

text, and run DisplayQuote – it will then add carriage returns to make the quotation a separate paragraph, and the

delete the quotation marks and (optionally) add whatever formatting and/or style you want for your displayed text.

And then the other thing that this macro can do is to add coding (<DIS> and </DIS>, or whatever), and the latter code

can optionally be on the same line or the following line.

All the optional features are set up within the first few lines of the macro, but if you want to use this macro for two

distinctly different applications, remember that you can make a copy of the macro, calling it, say QuotationMarker2.

For example, you could have one version of the macro that marked all the quotes and then another version that marked

just the long quotations in a different colour.

N.B. Working out how to tell the difference between a close quote mark and an apostrophe was an interesting

challenge. Take for example:

‘Aren’t the boys’ books on the ’phone table?’ he said.

compared with...

rounded ‘pebbles’ scattered individually. It turned out that we had discovered dinosaur eggs – a dinosaurs’ nesting

ground!

The quotation (‘pebbles’) looks like a plural possessive but isn’t, and then it’s immediately followed by a plural

possessive. Compare that with…

He talked about ‘the pebbles’ various colours that showed that we had discovered the eggs of dinosaurs,’ so it was a

nesting ground!

…and if you can see a logical way of telling me the difference between those two, I’d like to hear from you!

Anyway, I’ve now got the macro to check for a situation like this, and mark it with a font colour:

rounded ‘pebbles’ scattered individually. It turned out that we had discovered dinosaur eggs – a dinosaurs’ nesting

ground!

It also sets up the find and replace so that you can search through and check them all.

More importantly, you will have problems if the author has got unpaired quotation marks, or if some of the quotation

marks are the wrong way round – the macro simply won’t cope. These have to be sorted before you run the macro, but

here are some suggestions.

For unpaired quotation marks, what I suggest you do is, before running the macro properly on the working file:

– copy the whole text

– create a new blank document

– paste as pure text

– run the macro

– wind the display out to 20% or whatever, so that you can see lots of page at once

If you can then see any large areas of marked text, these are likely to be where the author has missed a close quote

mark, so correct these and try again.

One trick to avoid the wrong-way-round quotation mark problem is to do a quick FRedit F&R:

'|'

"|"

and Word will correct any back-to-front quotation marks – but it only works if you’ve got the auto-curly quotes option

in Word switched on.

And, of course, the macro relies on there being curly quotes, so it won’t work at all with straight quotes. But the hint

above will also encurl your straight quotation marks for you.

Finally, if the text has footnotes and/or endnotes, the macro will mark them too, unless you tell it not to do so.

Oh, and to remove single strikethrough, use the macro SingleStrike. Select all text and run it.

To remove all colour, select the whole text and run ColourMinus. To remove just that colour, and leave any other font

colouration intact, I think you can use UnHighlightAndColour.

So here are all the options at the beginning of the macro with a bit of explanation:

' Do you want displayed text marked?
markDisplayed = True

If you make it False, it will then ignore text with an indented left margin.

' Add coding to existing displayed quotes?

addCodes = True

Do you want codes adding?

These are the codes…
preCode = "<DIS>"

postCode = "</DIS>"

Do you want the final code at the end of the final line or at the beginning of the following paragraph?
codeOnNextLine = False

' Minimum length of quotes (words)

minLength = 4

If you want all quotations to be marked, regardless of length, set this equal to zero.

' Minimum indent of quotes (cm)

minIndent = 0

This is helpful if there is text that is indented but that is not displayed text. Hopefully the displayed text is the most

indented text (otherwise you’re scuppered!). So if the text with a 1.0 cm indent is not displayed text, but the displayed

text is, say, 2.0 cm then set this variable to, say:

minIndent = 1.1

' Colour the font of quotations

colourFont = True

myColour = wdColorLightBlue

True or False decides if this feature is used. Other colours you might want to use include: wdColorRed, wdColorBlue,

wdColorPink, wdColorBrightGreen.

' Colour of the possible plural possessive problems
possessiveColour = wdColorRed

The colour for any possible possessive plural problems.

' Add a highlight

highlightText = True

myHighlight = wdTurquoise

True or False decides if this feature is used. Other colours you might want to use include: wdYellow, wdTurquoise,

wdBrightGreen, wdPink, wdRed, wdGreen, wdDarkYellow, wdGray25, wdGray50.

' Strike it through

strikeSingle = True

strikeDouble = False

Take your pick, but you can’t have both true.

' What kind of quote?

doDoubleQuotes = True

doSingleQuotes = True

You can mark either single quotes or double quotes or both.

' Do you want the notes checked?

doFootnotes = True

doEndnotes = True

If there aren’t any foot/endnotes it doesn’t matter, so you only need to make either of these False if you definitely

don’t want it to mark the notes.

Sub QuotationMarker()

Run a FRedit list
If there’s a FRedit list that you run regularly then you can set up a macro so that it loads the FRedit list, runs FRedit

and then closes the FRedit list. The listFile = line sets the full filename of the FRedit list, including the file path.

To find the full filename of the FRedit list, open the list file and then run this macro:

Sub FullNameType()

And here’s the FRedit-calling macro:

Sub FReditListRun()

Run a FRedit List from a menu of lists
(Video: youtu.be/1bVduGAFrhU)

If you have a repertoire of different FRedit lists that you want to use, this macro will allow you to select a FRedit list

from a menu. Place all your different FRedit lists in one directory (preferably using names with significant initial letter

– you’ll see why in a minute), and add the address of that directory to the head of the macro. If the directory name is

MyLists, the line might be:

MyDir = "C:\Documents and Settings\Paul\My Documents\MyLists\"

When you run the macro, it scans that directory and creates a menu such as:

http://wordmacrotools.com/macros/Q/QuotationMarker
http://wordmacrotools.com/macros/F/FullNameType
http://wordmacrotools.com/macros/F/FReditListRun
https://youtu.be/1bVduGAFrhU

Note that it uses the initial letter of the filename as its input device. If there are two FRedit lists with the same initial

letter, the second one is given a double letter as input. If you try to have three lists with the same initial letter, it says,

“You can’t do that!” :-)

So type in the relevant letter(s) and press <Enter> or click OK; it will then load up that FRedit list, run FRedit and

then close the FRedit list file.

Sub FReditListMenu()

Multifile FRedit
Now, if you think FRedit is dangerous, this is ultra-mega-dangerous! It will open every single file in turn in your file

list (see below), edit them all, using the currently open FRedit list, and resave each edited file – so as the edited files

have now been saved, there’s no undoing what you’ve just done.

As with my other multifile macros, to get you to identify the folder containing the files, the macro brings up the Open

File window, so you navigate to the required folder and then click Cancel. The macro then generates a list of all the

files in the folder and asks whether you want to work on all the files in the list. If you say ‘Yes’, it uses the complete

list of files that it has created and works through them all one by one.

If you say you don’t want to work on all the files, the macro just stops. The list will look then something like this:

C:\Program Files\VirtualAcorn\VirtualRPC-SA\HardDisc4\MyFiles2\WIP

Macro Jobs.doc

Roman cats.doc

Stats.docx

The point is that you can then edit this list, either deleting files you don’t want included, or putting a vertical bar (‘|’)

in front of any you want it to ignore.

If you now run the macro again, it recognises that this Word document is a file list and so it proceeds to work through

the listed (and not ignored) files, opening each one and, using the current FRedit list, editing them and resaving them.

The terrible deed is done!

Don’t say I didn’t warn you! :-)

MultiFileFRedit also gives you the option to accept all existing tracked changes in each file before doing you new set

of F&Rs. To do this, set:

acceptAllRevs = True

This is probably a good idea, anyway, because doing global F&Rs on a file that already has track changes in it is

fraught with danger, anyway.

IDEA! If you have a macro that you want to run on a whole list of files, resaving the file after running it, then

MultiFileFRedit is your friend. All you would have to do is, if the macro is called MyMacro, then create a one-item

FRedit list:

DoMacro|MyMacro

and run MultiFileFRedit.

But make sure that MyMacro really is a properly functionaing macro, bfore you try to use it on lots of files! (And

make sure that you take a back-up copy of the files first – well, you would have done that anyway, wouldn’t you?!)

Sub MultiFileFRedit()

http://wordmacrotools.com/macros/F/FReditListMenu
http://wordmacrotools.com/macros/M/MultiFileFRedit

Quicker creation of FRedit lists
(Video re spelling: youtu.be/W-JX3P1hZF8)

(Video re hyphenation: youtu.be/olyCyDzCDe8)

(SpellingSuggest gets a mention in video: youtu.be/FVt2ggFXf4A)

If you have a list of words (such as that generated by SpellingErrorLister) and you want to ‘do something’ with each

of the various words, to prepare your FRedit list then there are several macros to help. Here’s a spoof sample list:

bubblechamber

envirnment

evaluted

flangoscope

intermal

managment

mnthly

projcet

Beveley

MTRQ

Pingson

Pongson

Propsing

Correcting the spelling automatically – For words like ‘envirnment’ and ‘evaluted’, you can use SpellingSuggest

which, if run twice, will give you:

envirnment|environment

evaluted|evaluated

Simple as that! It uses Word’s spelling checker and accepts the first alternative suggestion, which in fact is usually

correct.

(SpellingSuggest also appears in the Editing section below, because it also corrects spellings in the body of a

paragraph. e.g., if you clck in ‘clck’ in this sentence, and it will change it to ‘click’.)

Correcting spelling manually – If you use FReditCopy, it copies the word:

Beveley|Beveley

and then you can add the missing ‘r’.

Highlighting – If you want to use FRedit to highlight the word, using FReditSame twice would produce:

Pingson|^&

Pongson|^&

And once you’ve got the ‘^&’ in place, you can add various forms of ‘highlighting’, as per normal with FRedit: italic,

bold, text colour, coloured highlights etc.)

However...

High speed highlighting – To speed things up even further, you can use FReditListProcess. The idea here is to work

your way down the list, using SpellingSuggest or FReditCopy to correct the spellings, but if you just want to

‘highlight’ a word, just apply your chosen ‘highlight’ to the single word (italic, bold, text colour, coloured highlight

and underline) and carry on down the list. And you don’t need to waste time deleting those words that are actually

correct.

All you need to do, after doing the ‘highlighting’ and error corrections, is to go back up the list and use

FReditListProcess. To illustrate, if this is your ‘highlighted’ and corrected list:

https://youtu.be/W-JX3P1hZF8
https://youtu.be/olyCyDzCDe8
https://youtu.be/FVt2ggFXf4A

What does FReditListProcess do, and why?

bubblechamber

envirnment|environment

evaluted|evaluated

flangoscope

intermal|internal

managment|management

centr|centre

projcet|project

Beveley

MTRQ

Pingson

Pongson

Propsing|Proposing

then running the macro will produce:

envirnment|environment

evaluted|evaluated

intermal|internal

managment|management

centr|^&

~<centr>|centre

projcet|^&

~<projcet>|project

~<Beveley>|^&

~<Pingson>|^&

~<Pongson>|^&

Propsing|Proposing

Actually, I had to run it twice because it starts at the cursor but it stops when it gets to a blank line – useful if you only

want to process a section of your list.

So you can see that it has deleted ‘bubblechamber’, ‘flangoscope’ and ‘MTRQ’ because these had no attribute applied

to them.

Now, one of the commonest errors I make with FRedit is to forget about the danger of word-in-word occurrences, e.g.

doing etc|etc. and then ending up with ‘Please fetc.h some etc.hings and sketc.hes’. Therefore, for each of

‘centr|centre’ and ‘projcet|project’, you will see that it has created two separate F&Rs. This is because, certainly in the

case of the first F&R, it could generate false corrections: it would change ‘use a centring device’, to ‘use a centreing

device’.

OK, so we could just use:

~<centr>|centre

which is fine, except what this would miss the error, ‘the BEVERLEY CENTR was opened...’ because wildcard F&R

is case sensitive. So there is a second F&R introduced into the list: centr|^& which would therefore highlight ‘the

BEVERLEY CENTR was opened...’ and it would highlight, ‘use a centring device’.

Doing this doubles the number of F&Rs, so I decided not to do this on longer words, such as ‘intermal|internal’. The

limit is set by:

minLength = 7

It has also added the wildcard codes to the ‘copy’ items (Beveley, Pingson and Pongson) so that it only searches on

whole words – maybe that’s a bit OTT, but it makes sure that, say, ‘McPongson’ doesn’t get erroneously highlighted.

Whether it adds a strikethrough to the copying items (to stop them being track-changed) is set at the beginning of the

macro:

makeCopyingNotTracked = True

Hyphenation changes – If you have a HyphenAlyse table of frequencies, you will need to use FRedit to make any

changes you need. HyphenationToFRedit allows you to create the FRedit list items at the bottom of the table. Then

you can copy them into your main list.

Here’s an example:

ni-au. . . . 1

nitride-based. . . . 1 nitride based. . . . 5

node-to-ground. . . . 1

noise-induced. . . . 1

no-load. . . . 1

non-coaxial. . . . 1

non-communication. . . . 1

non-conducting. . . . 1

non-device. . . . 3

non-flammable. . . . 1

non-isolated. . . . 10

non-linearity. . . . 2

non-linear. . . . 10 nonlinear. . . . 1

non-linearity. . . . 2

off-state. . . . 3 off state. . . . 2

on-state. . . . 9

So, clicking in the cell ‘nitride based. . . . 5’ and running the macro generates:

¬nitride-based|nitride based

Clicking in ‘nonlinear. . . . 1’ produces

¬non-linear|nonlinear

i.e. you click in the cell of the word-format you want.

However, if you double-click on ‘nonlinear’, to select it (or just drag-select a bit of the text in that cell), the macro

takes that to mean that you want both options:

¬non linear|nonlinear

¬non-linear|nonlinear

But you might want, say, to standardise on ‘off state’ and ‘on state’. For the former, you just click in the cell that says

‘off state. . . . 2’ and run the macro, but for ‘on state’, you just have to click in the empty cell under ‘off state. . . . 2’,

and run the macro.

After it has placed the FRedit list item(s) at the end of the file, you can jump back to the line you came from by using

my BookmarkTempFind macro.

Bringing text from other files – If I have some text in another file (such as ProperNounAlyse list) that needs to go

into the FRedit list, just copy the text, click somewhere (anywhere) in the FRedit list, and run FReditCopyPlus. It

creates a new line, pastes in the text, strips off any frequency data, adds the ‘|’ character and copies the text.

For example, suppose I had spotted an errant name in my ProperNounAlyse list:

Brosseau . . . 3

Brousseau . . . 2

If I click select, say, the first line and copy it, I can go into the FRedit list and run FReditCopyPlus, which would

produce:

¬Brosseau|Brosseau

I can either change leave it as it is to just highlight the word, or change either the Find or the Replace word to effect a

spelling correction.

Whether the macro adds the strikethrough (to stop it being track-changed) and/or the ‘¬’ (to make it case insensitive)

and/or highlights it (and in what colour) are all set at the beginning of the macro – adjust to taste!

myColour = wdTurquoise

makeItCaseInsensitive = True

makeItNotTracked = True

Whole word search and replace – (FReditListProcess has probably made this redundant, but...) For some jobs such

as automatic spelling correction, you may feel safer with whole-word F&R. So using FReditCopyWholeWord with the

list:

this

that

tother

click, click, click gives you:

~<this>|this

~<that>|that

~<tother>|tother

Inverting items – If you have a FRedit item the wrong way round, then FReditSwap switches it back:

hello|goodbye

becomes

goodbye|hello

Sub SpellingSuggest()

Sub FReditCopy()

Sub FReditSame()

Sub FReditListProcess()

Sub HyphenationToFRedit()

Sub FReditCopyPlus()

Sub FReditCopyWholeWord()

Sub FReditSwap()

Create a FRedit list from a proper noun query list
(Video: https://youtu.be/4Ln95a1Cqyc)

If you have one of the new-style proper nouns query lists, it’s very easy to generate items for your FRedit list. For

example, this extract from a list:

http://wordmacrotools.com/macros/S/SpellingSuggest
http://wordmacrotools.com/macros/F/FReditCopy
http://wordmacrotools.com/macros/F/FReditSame
http://wordmacrotools.com/macros/F/FReditListProcess
http://wordmacrotools.com/macros/H/HyphenationToFRedit
http://wordmacrotools.com/macros/F/FReditCopyPlus
http://wordmacrotools.com/macros/F/FReditCopyWholeWord
http://wordmacrotools.com/macros/F/FReditSwap

 6 = Educaion . . . 1

 6 = Education . . . 1

 1 = Even . . . 3

 1 = Eves . . . 2

* Hernandez . . . 1

* Hernández . . . 3

* Hernendez . . . 1

 6 = Institute . . . 1 = F

 6 = Instituto . . . 1 = F

 Jean . . . 1 = A

 Joan . . . 1 = A

* 6 Jose . . . 2

* 6 José . . . 8

* 6 Jusé . . . 1

If you click in ‘Hernández’ and run this macro, it looks for your FRedit list (i.e. an open file containing vertical bar

characters: ‘|’) and types in:

Hernandez|Hernández

and you’d put the cursor in ‘José’, this time the macro would have generated two items:

Jose|José

Jusé|José

Sub ProperNounToFRedit()

Create a FRedit list from a text list
(Video: youtu.be/AqREu_iJ2Yg)

This is a general tool: it takes a list, adds some text in front of, and after, every item, and then adds formatting to the

list. You could use it to add a dash and a tab before, and a colon after:

this

that

the other

could become

– this:

– that:

– the other:

To explain it, I'll give a specific example for a FRedit list:

Suppose you have a list of words that you want highlighted in the text, but you only want whole words, so you have to

use a wildcard for each one, e.g.

~<color>|^&

So you start with the list:

http://wordmacrotools.com/macros/P/ProperNounToFRedit
https://youtu.be/AqREu_iJ2Yg

color

colors

favor

favors

labor

labors

The start of this macro sets up the text before each word (or phrase), the text after each, and the kind of

colouration/highlighting/italic/bold you want:

txtBefore = "~<"

txtafter = ">|^&"

doItalic = False

doBold = False

addColour = 0

addHighlight = wdYellow

The result is:

~<color>|^&

~<colors>|^&

~<favor>|^&

~<favors>|^&

~<labor>|^&

~<labors>|^&

Another example, might be if you want to colour each of the words if it’s followed by a comma, colon or apostrophe.

If so, use:

txtBefore = "~<"

txtafter = "[,':]|^&"

doItalic = False

doBold = False

addColour = wdColorBlue

addHighlight = wdNoHighlight

The result would be:

~<color[,':]|^&

~<colors[,':]|^&

~<favor[,':]|^&

~<favors[,':]|^&

~<labor[,':]|^&

~<labors[,':]|^&

Sub FReditListCreate()

Lines of text into paragraphs
If you have text, say from emails, or from PDFs, with lots of individual lines, and you want to make them up into

paragraphs, you can, of course, use FRedit (see the FRedit library), but this is a single macro that does the necessary

global F&Rs.

http://wordmacrotools.com/macros/F/FReditListCreate

It may be that some lines have line breaks instead of paragraphs (use Show Formatting to see) – the macro deals with

those. And/or the paragraphs may be delineated by double returns, so the macro deal with both.

It’s just the macro equivalent of:

^11|^32

^p^p|zczc

^p|^32

zczc|^p

Sub EmailFormatter()

Text exported from PDFs (or from OCR)
When text is exported from a PDF into Word (or has been OCRred), there are usually some ‘issues’, though not

always the same issues. FRedit is your friend here. You can make obvious changes for errors in the text such as:

̈ u|ü

̈ o|ö

Ligatures (fi/ff/fl/ffi) can come out in all sorts of fun formats.

Interestingly, I had one PDF in which all the ‘fl’s did actually came out as ‘fl’ but the ‘fi’s and the ‘ff’s were

converted to ‘W’ and ‘V’ respectively!

So here’s the FRedit list that I used (though I can’t quite work out now how it’s supposed to work!):

~W([bcdfgjklmnpqstvwxz])|fi\1

~V([bcdfgjklmnpqstvwxz])|ff\1

~([a-z])W|\1fi

~([a-z])V|\1ff

~Wr([!io])|fir\1

(But I now have a macro solution to these funny characters in place of ligatures – see below.)

The other major issue I find is hyphenation. The problem comes two ways round:

1) Where words have been soft-hyphenated, the hyphens are still there, even when they shouldn’t be. For example, if

‘preparation’ has been split with a hyphen as ‘pre-paration’ or ‘prepar-ation’, it will need to be rejoined.

2) Occasionally, I’ve had PDFs where all the line-end hyphens have been deleted whether soft or hard. So, on the plus

side, that means that ‘pre-<newline>paration’ would correctly appear as ‘preparation’, but then ‘two-

<newline>dimensional’ (wrongly) becomes ‘twodimensional’.

But there are macros to help you – see below.

Rejoining hyphenated words (1)
(The following macro is newer, and probably better, especially when combined with PDFHyphenChecker.)

This macro looks through a file, checks every paragraph (i.e. every chopped-up PDF line) that ends with a hyphen,

and tries to link it with the word at the start of the next line. If the two part-words, when joined, form a valid word

(e.g. ‘pre-paration’ becomes ‘preparation’), it is joined; however, the word ‘twodimensional’, being a spelling error,

remains hyphenated.

The macro highlights the words that it has joined, so that you can check them. If you don’t want them highlighted, use

myColour = 0.

http://wordmacrotools.com/macros/E/EmailFormatter

Sub PDFsoftHyphenRemove()

Rejoining hyphenated words (2)
(Video: youtu.be/iESM6OaGBm4)

If you select all the text in a PDF, copy it and paste it into a new Word file, the text will be there, but probably in

individual lines:

Our aim is to compute jelly invariants of three-dimensional spaces. This chap-¶

ter begins with a few basics about jelly and then introduces the class of which¶

this is an example of the meaningless text I’m writing here, but I need an non-¶

linear example for the purposes of this illustration.¶

All this macro does is rejoin (apparently) split-by-hyphen words, so it will produce:

Our aim is to compute jelly invariants of three-dimensional spaces. This chapter¶

begins with a few basics about jelly and then introduces the class of which¶

this is an example of the meaningless text I’m writing here, but I need an nonlinear¶

example for the purposes of this illustration.¶

Then you can use PDFHyphenChecker to check the resultant file (see below).

Sub PDFHyphenRemover()

Correcting wrongly un-hyphenated words (global)
Rejoined hyphenated words can produce errors, so first here’s a global macro, which may be a bit too dangerous, and

then a selective one, which may be a bit slow – take your pick!

This macro looks through a file, checks the last word of every paragraph (i.e. every chopped-up PDF line) and tests to

see if it’s a spelling error. If so, it tries to divide the word at various places to see if it can make it into two separate

words. For example, it would divide ‘twodimensional’ into ‘two’ and ‘dimensional’, and then it puts back the hyphen

which has presumably been deleted.

The macro highlights the words it has hyphenated in a colour of your choice. If you don’t want it highlighted, use

hyphColour = 0.

Sub PDFhardHyphenRestore()

Correcting wrongly un-hyphenated words (selective)
(Video: youtu.be/iESM6OaGBm4)

This macro starts from the current cursor position, and checks every paragraph until it finds one that ends with a

spelling error. It then tries to split it up into two separate, correctly spelt words. Then it asks for your view on whether

to continue. You can say yes, and it keeps the hyphenation, or no, and it restores the unhyphenated version. So you are

saying it’s a correctly spelled word (perhaps a specialist word for the book’s subject). Or you can stop and edit the text

by hand, if necessary.

As it goes through, in response to your decisions to accept the hyphenation or not, it creates a list of ‘OKwords’, at the

end of the file. Then each time it finds an end-of-line spelling error, it checks against the OKwords list, and if you’ve

already accepted it once, it simply ignores the ‘error’, and moves on, thereby saving time.

http://wordmacrotools.com/macros/P/PDFsoftHyphenRemove
http://wordmacrotools.com/macros/P/PDFHyphenRemover
http://wordmacrotools.com/macros/P/PDFhardHyphenRestore

This OKwords list can also used by other spelling-related macros. In particular, if you run (the latest version of)

SpellingErrorLister, it will check the OKwords list and not include any OKwords in the spelling error list that it

generates.

Sub PDFHyphenChecker()

PDFs with missing ligatures
In one PDF script that I converted to Word, all the ligatures had been converted to underline characters: ‘I _nd English

people di_cult to in_uence, which causes some su_ering.’, where each is missing either ‘fi’, ‘ffi’, ‘fl’ or ‘ff’.

This macro finds each underline, then tries each of the ligatures in turn, and checks the spelling of the resulting word.

If it’s OK (e.g. ‘_nd’ becomes ‘find’), it changes it into the new word. If none of the ligatures gives a recognised

spelling (e.g. ‘John Black_eld’), it just highlights it.

Sub PDFunderlineToLigature()

PDFs with missing ligatures (2)
On the job mentioned a few paragraphs above, specific ligatures were replaced by specific characters (‘fi’ became ‘W’

and ‘ff’ was converted to ‘V’). So this next macro deals with that. It looks for these characters, and tries to replace

them by the relevant ligature, but if it makes an incorrectly spelt word, it leaves it alone.

It does make mistakes, of course. For example, if ‘fi’ is ‘W’, then the sentence, ‘We went on Wednesday.’ becomes

‘fie went on Wednesday.’ The ‘Wednesday’ is OK, but ‘fie’ happens to be a correctly spelt word.

No worries, just run the macro from within FRedit:

| Block off all ‘We’s

We|Wzczce

| Run the macro

DoMacro|PDFfunniesToLigatures

| Get rid of the dummy text

zczc|

You can set the characters for each ligature at the beginning of the macro:

fi_Code = "W"

fl_Code = "U"

ffi_Code = "Z"

ff_Code = "V"

However, in the case I mentioned, the ‘fl’ and the ‘ffi’ had translated OK, so you can save time by only testing the

ligatures needed, use:

fi_Code = "W"

fl_Code = ""

ffi_Code = ""

ff_Code = "V"

Sub PDFfunniesToLigatures()

http://wordmacrotools.com/macros/P/PDFHyphenChecker
http://wordmacrotools.com/macros/P/PDFunderlineToLigature
http://wordmacrotools.com/macros/P/PDFfunniesToLigatures

PDFs odd ASCII codes for ligatures
In one job, I copied and pasted the text from the PDF into Word, only to find that the ligatures had come across as

funny ASCII codes: 11, 12, 13 and 14. This is a little difficult and doesn’t lend itself to resolution via FRedit since, for

example, 13 is the ASCII code for newline! So I had to use devious techniques.

You may never have this situation, but if you do, then try this macro, and if it doesn’t work right, let me know, and

send me a sample file if possible, and I’ll tailor it to your situation.

Sub LigatureConverter()

For OCR/PDF, underline all spelling errors
In order to see what’s wrong in a file, and how to convert it (with FRedit or with some of the following macros), it can

be helpful to have all of the spelling errors within the file highlighted in some way. If you use underline as a way of

‘highlighting’ them then you can limit F&R to only the underlined text.

The two macros either underline all ‘spelling errors’, or try to work out which words might be proper nouns and

ignore them.

Sub PDFspellAll()

Sub PDFspellIgnoreProperNouns()

Extracting formatted text from complex files (e.g. from PDFs)
This is of use when you have a complex PDF and you want to get the text out in order to analyse it. This was written

for PDFs that were created by InDesign, where there were images that had a column of text alongside it, and InDesign

had put every single line of text into a separate text frame!

The macro copies the main text (of course) and the text from the frames, but in the output file you might want the one

above the opther or vice versa. This is set by this true/false statement:

mainTextFirst = False

Sub TextHoover()

Extracting text from textboxes
When trying to get the text out of a PDF file (perhaps to analyse it with macros), you sometimes find that the text is in

a series of little textboxes. Here’s a quick way to extract that text into a separate file.

Here’s how you do it:

1) Open a new blank document

2) Click in the first textbox/frame/area to be collected

3) Click back in the blank document

4) Set the macro running

5) Click on the title bar of the source document, and you should see that the text area is then selected and copied over

to the blank document

6) Click in the middle of the next text area

7) Repeat until you’ve done enough

You can stop the macro at any time by clicking the up-arrow key. (A bit complex – don’t ask!)

If you stop collecting text and yet leave the macro running, it will bong at you to remind you.

Sub TextPickup()

http://wordmacrotools.com/macros/L/LigatureConverter
http://wordmacrotools.com/macros/P/PDFspellAll
http://wordmacrotools.com/macros/P/PDFspellIgnoreProperNouns
http://wordmacrotools.com/macros/T/TextHoover
http://wordmacrotools.com/macros/T/TextPickup

Multifile text compilation
(The latest version is demo’ed at: youtu.be/GE47DZ-ZkV0)

(Mac users! You should be OK with this macro, but if it does throw up any errors, please try using

MultiFileTextForMac, which works slightly differently, but is not as fully-featured as the main macro. Do ask if you

have any problems.)

(N.B. If you have Word 365, this macros the MultiFileText macro can actually combine the PDFs into a single Word

file for you.)

If you have a book made up of a set of separate files, it might be helpful to have a single file containing the text of the

whole book. So that’s what this macro does.

As with my other multifile macros, the macro gets you to identify the folder containing the files by bringing up the

Open File window. Navigate to the required folder and click ‘Cancel’. (If you’re using MultiFileTextForMac, click

‘Open’ instead.) The macro then asks whether you want to work on all the Word files in that folder. If you say ‘Yes’,

it uses the complete list of files that it has created and works through them all one by one.

If you say you don’t want to work on all the files, the macro just stops. The list will look then something like this:

C:\Documents and Settings\Paul\My Documents\myNewBook

Chapter_1.docx

Chapter_2.docx

Chapter_3.docx

Prelims.docx

N.B. If chapters 1–9 have a leading zero, they’ll come in the correct alphabetical order: Chapter_01, Chapter_02, etc.

The point is that you can then edit this list, either deleting files you don’t want included, or putting a vertical bar (‘|’)

in front of any you want it to ignore.

If you now run the macro again, it recognises that this Word document is a file list and so it proceeds to work through

the listed (and not ignored) files, opening each one and creating the compilation.

It opens each of the Word files in the list, copies the text and pastes the text into a single Word file. It doesn’t copy

across any of the images or the text of the comments, but it does include the text of the footnotes and endnotes plus

any text that appears in textboxes. However, no attempt is made to interleave the notes or the textbox text with the

main text; rather, all this extra text is placed at the end of the text in a given file.

It also preserves any italic text in italic, and ditto for bold and superscripted text. This means that you can use the

resulting file with DocAlyse, and it will correctly count how many ‘et al.’s are in italic, and also how many ‘funny

degree symbols’ there are, i.e. superscripted zeros, O’s or o’s. And having bold text helps you to see where the

headings are.

(Recent upgrade feature for FindSamePlace: If you have a file open that has been created by MultiFileText or

MultiFileWord then if you click in a line and run this macro, it loads up the relevant original file and then finds the

same line, so that you can look at the context.)

Sub MultiFileText()

Sub MultiFileTextForMac()

These macros are also available from:

http://www.archivepub.co.uk/LongMacros/MultiFileText

http://www.archivepub.co.uk/LongMacros/MultiFileTextForMac

Multifile Word compilation
If you have a book made up of a set of separate files, it might be helpful to have a single file containing the text of the

whole book. So that’s what this macro does. (A simpler alternative is ChapterFileLinker, below)

https://youtu.be/GE47DZ-ZkV0
http://wordmacrotools.com/macros/M/MultiFileText
http://wordmacrotools.com/macros/M/MultiFileTextForMac
http://www.archivepub.co.uk/LongMacros/MultiFileText
http://www.archivepub.co.uk/LongMacros/MultiFileTextForMac

As with my other multifile macros, to get you to identify the folder containing the files, the macro brings up the Open

File window, so you navigate to the required folder and then click Cancel. The macro then generates a list of all the

files in the folder and asks whether you want to work on all the files in the list. If you say ‘Yes’, it uses the complete

list of files that it has created and works through them all one by one.

If you say you don’t want to work on all the files, the macro just stops. The list will look then something like this:

C:\Documents and Settings\Paul\My Documents\myNewBook

Chapter_1.docx

Chapter_2.docx

Chapter_3.docx

Prelims.docx

N.B. If chapters 1–9 have a leading zero, they’ll come in the correct alphabetical order: Chapter_01, Chapter_02, etc.

If you now run the macro again, it recognises that this Word document is a list of filenames and so it proceeds to work

through the listed files, opening each one and creating the compilation.

One thing to beware of is that if you join together lots of files, the size of the resulting file might prove a challenge for

your computer system. I have therefore added an option to deletes all the embedded pictures.

The option is set at the beginning of the macro, so if you want to keep the images, use:

deleteImages = False

There is also now an option to add a filename at the top of each file so that you can see more easily where one section

ends and the next begins.

addTitle = True

myFontSize = 30

titleHighlightColour = wdYellow

Another addition is the option to either leave the foot/endnotes as linked notes or to copy and paste each set of

footnotes and/or endnotes at the end of the text of each file. This is useful because otherwise the endnotes for the

whole book will be right at the end of the document.

insertNotesWithinText = True

You can also decide whether or you want it to accept the track changes before concatenating the files:

acceptTCs = True

The text within textboxes can be a bit of a pain so rather than just leaving that text within the textboxes, there’s now

an option to copy the text out of them boxes and embed that text as ordinary text within the file. The empty textboxes

are then deleted.

embedTextboxText = True

Unfortunately, I haven’t found any way of working out, where, within each file, a given textbox is. I have therefore

simply had to paste the textbox text at the end of the text of each file.

Also, you can unlink field, which makes the overall file less ‘complicated’, i.e. if there are still fields – say, linking

section numbers to their citations in the text – these can get corrupted in the process of concatenating files, so you can

choose replace these citations with pure text. However, if you unlink all fields then equations can get turned into

uneditable ‘pictures’, so there are two options. I suggest using:

unLinkAllFields = False

unLinkFieldsExceptEqns = True

(Recent upgrade feature for FindSamePlace: If you have a file open that has been created by MultiFileText or

MultiFileWord then if you click in a line and run this macro, it loads up the relevant original file and then finds the

same line, so that you can look at the context.)

Sub MultiFileWord()

Chapter file compilation
If you have split up a book into separate chapter files and now want to recompile them into a single file, you can use

ChapterFileLinker.

As with my other multifile macros, to get you to identify the folder containing the files, the macro brings up the Open

File window, so you navigate to the required folder and then click Cancel. The macro then generates a list of all the

files in the folder and asks whether you want to work on all the files in the list. If you say ‘Yes’, it uses the complete

list of files that it has created and works through them all one by one.

If you say you don’t want to work on all the files, the macro just stops. The list will look then something like this:

C:\Documents and Settings\Paul\My Documents\myNewBook

Chapter_1.docx

Chapter_2.docx

Chapter_3.docx

Prelims.docx

N.B. If chapters 1–9 have a leading zero, they’ll come in the correct alphabetical order: Chapter_01, Chapter_02, etc.

If you now run the macro again, it recognises that this Word document is a list of filenames and so it proceeds to work

through just the remaining listed files, opening each one and creating the compilation.

The macro saves the compilation file – in the same folder – as ‘allTheBook’. N.B. it will overwrite any existing

‘allTheBook’ file in that folder. This name is set (and can be changed) in the line:

bookName = "allTheBook"

Sub ChapterFileLinker()

Multifile references compilation
(This can be used to collect the text of foot/endnotes, even if they aren’t references.)

This works in the same multifile way as the two above, but this scrapes together all the references. One and the same

macro will collect the references from all the files, whether they are in footnotes, endnotes or a section at the end of

the main text.

The section containing the references has to have a heading, which you then identify at the start of the macro code.

You can use a search something like:

refTitle = "^pReferences^p"

or

refTitle = "<H1>References"

(N.B. If there are footnotes or endnotes that aren’t references, then change the first line of the macro to

collectNotes = False.)

Sub MultiFileReferenceCollator()

http://wordmacrotools.com/macros/M/MultiFileWord
http://wordmacrotools.com/macros/C/ChapterFileLinker
http://wordmacrotools.com/macros/M/MultiFileReferenceCollator

Multifile track changes compilation
(Video: youtu.be/2hrfWRyDx18)

This macro goes through a set of files and creates a single file containing all the sentences that contain at least one

track change.

Sub MultifileTrackChangeReport()

Loading multiple files from a folder

At the beginning of a job, it might be helpful to load a specific set of files from the work folder. This macro does just

that. Run it once to create a file list for the folder, then edit the list to just the files you want. Then in future, just open

the file list and run the macro.

Sub MultiFileLoader()

Text-only version of current document
This is a sort one-off version of MultiFileText, in that it creates a text-only version of the current open document, but

it preserves bold, italic, super- and subscript.

However, I find that, with large files, the F&Rs that it needs to do can be quite slow; worse still, after the macro has

finished, and beeped at to to tell you so, it still hase to reformat the whole of the new document. If you click anywhere

on the screen before the cursor starts flashing again (i.e. the reformatting is complete) then Word can crash.

So for macros such as ProperNounAlyse and SpellingErrorLister – where all you are interested in is the words – then

I’ve done an absolutely pure-text version, CopyTextVerySimple, which is much quicker for large files.

Sub CopyTextSimple()

N.B. This used to be called: CopyTextWithSomeFeatures

Sub CopyTextVerySimple()

Chopping into chapters
(Video: https://youtu.be/aRArJz6HmKI)

If a multi-chapter job comes to you as a single file, it can help greatly to edit it chapter by chapter, maybe using

FRedit, as I have explained in Section 6 “Book editing – a possible workflow”.

This macro allows you to chop a file up semi-automatically.

N.B. The chopped up files will be stored in the same folder as the source file.

For this macro, I decided to try using video-only documentation. Please let me know if you find this helpful... or not!

Thanks.

Sub ChapterChopper()

https://youtu.be/2hrfWRyDx18
http://wordmacrotools.com/macros/M/MultifileTrackChangeReport
http://wordmacrotools.com/macros/M/MultiFileLoader
http://wordmacrotools.com/macros/C/CopyTextSimple
http://wordmacrotools.com/macros/C/CopyTextVerySimple
https://youtu.be/SuO7VHRJFRU
http://wordmacrotools.com/macros/C/ChapterChopper

Chopping a file into sub-files, e.g. a book into chapters
This macro can be used to split any file into a set of smaller files based on where page breaks and/or section breaks

occur, so it’s up to you to insert the necessary breaks. You can insert page breaks by using F&R, for example using

Find: ^pChapter and Replace: ^mChapter.

When the macro is run, it asks you for the filename, offering you ‘Chapter’ as the default, but you can change it to

something else, if you prefer, then press Return. So, by default, the filenames will be Chapter01, Chapter02 etc.

If your text has some prelims followed by chapter 1, you can set:

firstChapterNumber = 0

and then the prelims will be Chapter00, and chapter 1 will be Chapter01 etc.

As it stands, it will spilt the text every time either type of break occurs, page or section. However, if, say, you want to

split only at section breaks, you can set, near the beginning of the macro:

myBreak = "^b"

If you’re using a Mac, you’ll need to set, near the beginning of the macro:

myPostfix = ".docx"

Sub FileChopper()

List all files in a folder
(Video: youtu.be/AqREu_iJ2Yg)

If you just want to create a list of all the files in a folder – say for record-keeping, or whatever – then this macro does

that. Navigate to the folder in question, then press Escape, and it will create the list. It can either create a list of just the

Word files (.doc or .docx) or of absolutely all the files, as set by:

showAllFiles = True

Sub FileLister()

Acronym list with frequency
Like the following macro, this creates a list of all the acronyms that occur in the currently open file, including mixed-

case acronyms such as ‘SfEP’. The macro asks first if you want to list acronyms that include numbers. If you say

‘Yes’ then it includes acronyms such as BBC2, C2C and H2SO4.

The difference is that it also counts them, so you then know how often each acronym occurs. The other extra feature is

that it highlights any acronym that occurs fewer than a certain number of times. This is useful if the client has a

different way they want you to define once and/or repeatedly and/or in a separate file.

Is this the sort of thing your student wants?

The decision point as to whether to highlight an acronym or not is set at the beginning of the macro:

minCount = 3

Adjust to taste.

The final extra feature that it ignores any words in the source file that have a strike-through applied. The idea is that

if, say, all headings are in full-caps, you can add strike-through to the heading styles (temporarily), and the headings

will be ignored by AcronymAlyse.

http://wordmacrotools.com/macros/F/FileChopper
https://youtu.be/AqREu_iJ2Yg
http://wordmacrotools.com/macros/F/FileLister

N.B. Please test it initially with a dummy file with < 5000 words. And have it seeded with some known acronyms in

it, so you can see if it's really doing what you expect.

The macro beeps at you every now and then, so that you know it’s not given up, but, as usual, please don't touch the

mouse, while the macro is running.

Sub AcronymAlyse()

Acronym list creator
This creates a list of all the acronyms that occur in the currently open file, including mixed-case acronyms such as

‘SfEP’. The macro asks first if you want to list acronyms that include numbers. If you say ‘Yes’ then it includes

acronyms such as BBC2, C2C and H2SO4.

It will also, optionally, create a FRedit list which you can then use to highlight all occurrences of each of the

acronyms, so that you can see them in context. This is set by using createFReditList = True at the beginning

of the macro.

On long files (20,000 words+), it can take quite a while to run, so if you want reassurance that it hasn’t given up

trying, set doBeeps = True, at the beginning of the macro and it will beep after completing each stage of the

analysis, so you know something is still happening.

Sub AcronymLister()

The list is created by copying the whole text, highlighting the whole thing and then, using F&R, removing the

highlighting from those items we want to keep. So, clearly, we unhighlight all the capital letters (using [A-Z]); if we

want numbers, we unhighlight [0-9].

The problem comes with mixed upper/lowercase words. How do you include, say, ‘SfEP’ but reject words that have a

single capital because they are at the beginning of a sentence? What the macro does therefore is only to unhighlight a

lowercase letter if it immediately precedes an uppercase one (using [a-z][A-Z]). This will not, therefore, find ‘BBCi’

but will lose the ‘i’ and you will end up with just ‘BBC’.

The original macro avoided this problem by going through the text word by word, checking each one in turn, but that

was unusably slow.

Acronym finder
Having got your list of acronyms, you might need to find what they stand for. The following macro looks at the

selected text, say ‘TLC’ and sets up a wildcard F&R to enable you to look for, ‘a word beginning with t/T followed by

a word beginning with l/L followed by a word beginning with c/C’. You can then look through the text to see if you

can identify the right bit of text. You can then copy it and paste it into your acronym list.

Sadly, if you try this with a four-letter acronym, the wildcard search is just a bit too much for Word and it generates an

error saying that the wildcard search is too complicated. So if you select a four-letter, the macro just looks for the first

three letters and, the first time it finds something that matches, it selects the following word, just in case that’s the

right definition for the acronym, so you can just click Ctrl-C to copy it. If it’s not right and you then got through to the

next match, it’ll only be looking for the three first words.

Sub AcronymFinder()

Create a list of acronyms and definitions
This macro assumes that, in the text, you have got things like “This is published by the British Broadcasting

Corporation (BBC) and then edited my members of the Society for Editors and Proofreaders (SfEP) and concerns

contacts with HM Revenue & Customs (HMRC).” It then looks through for the acronyms in parentheses and does its

http://wordmacrotools.com/macros/A/AcronymAlyse
http://wordmacrotools.com/macros/A/AcronymLister
http://wordmacrotools.com/macros/A/AcronymFinder

best to find the definition, prior to the acronym. It errs on the side of picking up too many words, on the basis that it’s

easier to tidy up the list by deleting unwanted words, rather than having to look back through the text if any words are

missing from the definition. From the above text, the macro creates:

Acronym list

BBC by the British Broadcasting Corporation

HMRC contacts with HM Revenue & Customs

SfEP Society for Editors and Proofreaders

Sub AcronymDefinitionLister()

Tagged uppercase words changed to small caps
The requirement here is to convert all words in a text that are in uppercase and have been tagged to be small caps. It

assumes that it will be tagged as:

<sc>MY TEXT IN CAPS</sc>

And should end up as:

MY TEXT IN CAPS

But there is an option not to also delete the tags, which would give:

<sc>MY TEXT IN CAPS</sc>

(The person asking for this, also wanted “<th>/</th>” to be converted to a thin space, which is just a global F&R,

added to the end of the macro.)

Sub TaggedTextToSmallCaps()

Make formatting tag invisible (hidden text)

If you had to “edit” a reference looking like this,

<REF><BOOK><AU><SNM>Daley</SNM>, <GNM>J.</GNM></AU>, <AU><SNM>Wood</SNM>,

<GNM>D.</GNM></AU>, and <AU><SNM>Chivers</SNM>,

<GNM>C.</GNM></AU>.<YR>2017</YR>. <BTL>*Regional Patterns of Australia's Economy and

Population*</BTL>. <LOC>Melbourne</LOC>:<PUB>The Grattan Institute</PUB>.</BOOK></REF>

It would be difficult, right?! And what if you wanted to do a Find for “Wood, D” – no way!

Is there a facility within Word to hide the tags? I don’t know, so please tell me if there is one, but my motto is: if in

doubt, write a macro!

So, if you run this macro, you get:

Daley, J., Wood, D., and Chivers, C..2017. *Regional Patterns of Australia's Economy and Population*.

Melbourne:The Grattan Institute.

Which is both readable and editable. And you can now search for “Wood, D”!

Run it again, and the tags reappear.

Sub TagsShowHide()

http://wordmacrotools.com/macros/A/AcronymDefinitionLister
http://wordmacrotools.com/macros/T/TaggedTextToSmallCaps
http://wordmacrotools.com/macros/T/TagsShowHide

Acronyms to small caps
The requirement here is to convert all acronyms in a text to small caps. It works on either a selection or, if no text is

selected, the whole of the file.

It defines an acronym as any complete word that consists of all capital letter, as long as it is three characters or more.

This limit is set in the macro as:

minLength = 3

Sub AcronymsToSmallCaps()

Highlight incomplete paragraphs
This is difficult to describe, but I find it very useful. The macro looks for any paragraph that does not end in a suitable

punctuation mark and, for any it finds, it highlights the very last character

This is in case you miss something like the fact that the previous paragraph, which didn’t have a full point

And neither did that one, but at least you were alerted!

OK, it will also highlight the final character of every heading, but I decided I could live with that. But you can opt for

the macro not to highlight any paragraph with fewer than, say, 20 words (or whatever number you want to set), which

means only long heading get their final character highlighted.

But if you want all unfinished paragraphs to be highlighted whether they are bold or not then use:

minWords = 0

at the beginning of the macro.

Other options that the macro has are set with:

mySoftColour = wdColorBlue

' or for no colouration inside tables

mySoftColour = wdColorAutomatic

addLightColour = True

myLightColour = wdGray25

underlineLineFeeds = True

underlineQuoteNoPunct = True

minWords = 10

The idea of the first is that for text inside tables, you don’t always want every paragraph to have a punctuation mark,

so in a table, instead of using, say, a bright green highlight (very ‘in yer face’), it uses a font colour (or not even a font

colour – see the option above).

The ‘light colour’ of the second option is that which is applied to all full stops at the ends of paragraph – but you can

switch it off altogether.

The final two are if you want (1) to put at underline on either or both one of those rogue linefeed, that can cause

problems (it has to be underline, because a highlight would be invisible!) or (2) underline cases where the final

character is a close quotation mark, and there’s not punctuation mark immediately in front of it.

Also, if you want to remove the highlighting applied – perhaps so you can make some global changes to the file and

then rerun the macro to check if your changes have done the trick – simply select a bit of text, and the macro will ask

you if you want to remove the existing highlighting.

http://wordmacrotools.com/macros/A/AcronymsToSmallCaps

Sub ParagraphEndChecker()

Sort a list and remove duplicates
(Video: youtu.be/Yx97w8XJ6iE)

Here are two functions that might be useful when dealing with acronym lists – or indeed any other sort of list. The first

is not rocket science – it just sorts the selected text. Once the list is sorted, the second macro removes all identical

adjacent lines, i.e. removes the duplicates from your list.

If no text is selected, each macro assumes you want to sort and/or remove duplicates from the whole text – but it does

ask you first.

And there’s now a combined macro that does both.

And now the DuplicatesRemove macro has the ability to do the removal case-insensitively (or sensitively), by the

setting of:

anyCase = True

or False.

Added feature: I wanted to compare two lists (the macro names on my laptop and those on my desktop) and delete

from the list any names that appear twice (or more). So to implement that change the variable:

' Make this True if you want to completely delete

' any lines that appear more than once

' removeBothDuplicates = True

removeBothDuplicates = False

Sub SortIt()

Sub DuplicatesRemove()

Sub SortAndRemoveDups()

Sort case-sensitively
(Video: youtu.be/Yx97w8XJ6iE)

If you have a list that you want sorting so that all the uppercase words (e.g. proper nouns) are sorted out separately,

you can use this macro.

Sub SortCaseSense()

Sort blocks of text
(Video: youtu.be/Yx97w8XJ6iE)

This is for sorting blocks of text such as names and addresses or block of data on multiple lines, where a block is

defined by a blank line:

Jones, DE

Age: 42

Height: 5'6"

http://wordmacrotools.com/macros/P/ParagraphEndChecker
https://youtu.be/Yx97w8XJ6iE
http://wordmacrotools.com/macros/S/SortIt
http://wordmacrotools.com/macros/D/DuplicatesRemove
http://wordmacrotools.com/macros/S/SortAndRemoveDups
https://youtu.be/Yx97w8XJ6iE
http://wordmacrotools.com/macros/S/SortCaseSense
https://youtu.be/Yx97w8XJ6iE

Brown, PQ

Age: 92

Height: 7'6"

Comment: Crikey she’s tall!

Green ZX

No data available

Adams

etc

etc

The macro will sort this into:

Adams

etc

etc

Brown, PQ

Age: 92

Height: 7'6"

Comment: Crikey she’s tall!

Green ZX

No data available

Jones, DE

Age: 42

Height: 5'6"

If a number of blocks of text are selected, it sorts just those, but if not it sorts the whole file.

Sub SortTextBlocks()

Sort, ignoring first ‘word’
(Video: youtu.be/Yx97w8XJ6iE)

(The first of these two macros is probably superseded by the second, but you never know; it might be useful.)

The idea here is that you’ve got a Vancouver list of references and want to sort it, ignoring the number that comes at

the beginning of the line, i.e. sort of the first author’s name:

1 Smith HG Blah blah blah

2 Anybody PQ Jabber Jabber Jabber

3 Whatsun TT Nother book

4 Jones KJ Whatever Next?

then gets sorted into:

2 Anybody PQ Jabber Jabber Jabber

4 Jones KJ Whatever Next?

1 Smith HG Blah blah blah

3 Whatsun TT Nother book

The macro sorts on the first so-many characters (set in the macro as 20). And in case the number is separated by a tab,

not a space, you can use the second myDelimiter line at the head of the macro.

Sub SortNumberedList()

http://wordmacrotools.com/macros/S/SortTextBlocks
https://youtu.be/Yx97w8XJ6iE
http://wordmacrotools.com/macros/S/SortNumberedList

A more general form of the macro is presented next. Here, you select the list to be sorted, run the macro and, if you

want the list sorted on the text after the first tab character, just press Enter. Otherwise, for the same effect as the

previous macro, type a space in the input box and then press Enter. Or to sort after some other character, just type that

character instead, e.g.

Beverley, Paul – macro writer word following a tab

Brown, Andrew – typesetter text following a tab

Johnson, Arthur – author this follows a tab

Williamson, James – proofreader and this follows a tab

using a comma gives:

Brown, Andrew – typesetter text following a tab

Johnson, Arthur – author this follows a tab

Williamson, James – proofreader and this follows a tab

Beverley, Paul – macro writer word following a tab

or a dash (type into the input box ^=, the F&R code for an en dash) gives:

Johnson, Arthur – author this follows a tab

Beverley, Paul – macro writer word following a tab

Williamson, James – proofreader and this follows a tab

Brown, Andrew – typesetter text following a tab

and going back to just running the macro and pressing Enter, to sort on the tab, gives:

Williamson, James – proofreader and this follows a tab

Brown, Andrew – typesetter text following a tab

Johnson, Arthur – author this follows a tab

Beverley, Paul – macro writer word following a tab

And by using ^+, you can sort of what follows an em dash.

Or how about these ideas on this list:

Williamson, James (2017) “Sandwiches for lunch”. (Wiley)

Brown, Andrew (2016) “A trip to the moon”. (Hodder)

Johnson, Arthur (2045) “My first space flight”. (McGraw Hill)

Beverley, Paul (2015) “Confessions of a macro junky”. (Elsevier)

Sorted using ‘(’ gives:

Beverley, Paul (2015) “Confessions of a macro junky”. (Elsevier)

Brown, Andrew (2016) “A trip to the moon”. (Hodder)

Williamson, James (2017) “Sandwiches for lunch”. (Wiley)

Johnson, Arthur (2045) “My first space flight”. (McGraw Hill)

And sorted using ‘"’ gives:

Brown, Andrew (2016) “A trip to the moon”. (Hodder)

Beverley, Paul (2015) “Confessions of a macro junky”. (Elsevier)

Johnson, Arthur (2045) “My first space flight”. (McGraw Hill)

Williamson, James (2017) “Sandwiches for lunch”. (Wiley)

And sorted using ‘. (’ gives:

Beverley, Paul (2015) “Confessions of a macro junky”. (Elsevier)

Brown, Andrew (2016) “A trip to the moon”. (Hodder)

Johnson, Arthur (2045) “My first space flight”. (McGraw Hill)

Williamson, James (2017) “Sandwiches for lunch”. (Wiley)

Fun, isn’t it?! :-)

Sub SortOnTextAfterDelimiter()

Sort list of names by surname
(Video: youtu.be/P-6VdmT2BbE)

Suppose you have a list of names that need to be put in order by surname. Suppose too that some of the names have

postfixes, such as ‘OBE’ or ‘MSc’ or ‘, Jr.’, so that the surname isn’t the final word on the line. This would mean that,

say, ‘Paul Beverley OBE’ would be sorted with the O’s not with the B’s.

No worries! This macro will allow you to include these postfixes in a list at the beginning:

myPostfixes = "| BSc| MSc| OBE|, Jr.|, Sr.|"

It then sorts the list on the surname. Note that for, say, ‘Paul Beverley, Jr.’ you have to include the comma in the

‘myPostfixes’ line.

Sub SurnameSorter()

Sort reference list that has ‘ditto’ lines
(Video:https://youtu.be/f9sSbJ9XLZM)

The scenario here was of bibliography and references lists that were out of alphabetical order. Worse, the list used the

convention of not repeating the author name but adding some sort of ditto marks – initially, three em dashes:

Adams, Sathy. Bsa Arulobeit im Sathy Orocn. Pinbit: Siuwsbit Cessdet, 1918.

———. “Bfi Litlagbn im Depahby.” Et Depahodenc otr Ebn Lhebeln. Taf Yihk: TYU Ghann, 1984.

This could easily be solved with FRedit (explanation follows):

^p^+^+^+|zczc

DoMacro|SortIt

zczc|^p^+^+^+

The first F&R pulls all the ‘ditto’ paragraphs up to become part of the paragraph to which they belong, leaving a

special ‘marker text’ (zczc) so that it can be restored later. So those single paragraphs, along with all the others, can

then be sorted, using the SortIt macro. Finally, the paragraphs are split up again, by using another F&R.

No problem!

But then I discovered that some of the other references had a different format:

Aristotle. Telicolsaot Abseln. Cetaido, TY: Rivah, 1998.

- The Giabeln. Ditrit: Colcennot otr Li., 1917.

So I extended it to:

^p^+^+^+|zczc

^p-^t|pqpq

http://wordmacrotools.com/macros/S/SortOnTextAfterDelimiter
https://youtu.be/P-6VdmT2BbE
http://wordmacrotools.com/macros/S/SurnameSorter

DoMacro|SortIt

zczc|^p^+^+^+

pqpq|^p-^t

Sorted!

Well, yes, except that there were also some references such as:

“Bending Vibahn faha Cibevobar py Maoh im Dinetw bsaeh Nbobun.” Bsa Aliticenb, 26 Oghed, 2018.

which needed to be sorted in with the B’s!

So I had to write a macro after all, to do a fiddle to remove any open double quotes, do the sort, then restore the

quotes.

But while I was at it, I decided to make the macro so that it would either work on the whole file or (because this list

had three separate alphabetic sections) or work only on the selected text.

So the macro declares two acceptable line-starters:

myDitto1 = "-^t"

myDitto2 = "^+^+^+"

i.e. a line-starter can be either [a hyphen and a tab] OR [three em dashes].

Sub BibSortWithDittos()

Sort group of citations
(Video: youtu.be/Yx97w8XJ6iE)

In the section below are two macros, SortListInText and CitationListSortByYear. They can sort citation lists such as

“(Saheem, 2013; Darwish et al., 2007; Andrews and Bloggs, 2010)” either into alphabetic order by surname, or

chronologically.

Either “(Andrews and Bloggs, 2010; Darwish et al., 2007; Saheem, 2013)”

or “(Darwish et al., 2007; Andrews and Bloggs, 2010; Saheem, 2013)”.

Here are the two macros...

Alphabetic sort in-line lists within a paragraph
(Video: youtu.be/Yx97w8XJ6iE)

The first macro, SortListInText, can sort lists in a number of formats within a paragraph:

 1) (Saheem, 2013; Darwish et al., 2007; Andrews and Bloggs, 2010)

 2) (Saheem 2013, Darwish et al. 2007, Andrews and Bloggs 2010)

 3) The winners are Simons T, Andrews P and Peters V.

 4) The winners are Simons T, Andrews P & Peters V.

 5) The winners are Simons T, Andrews P, and Peters V.

 6) The winners are Simons T, Andrews P, & Peters V.

It sorts lists with or without conjunction and with or without serial comma, and using ‘and’ or ‘&’ as the conjunction.

It checks if there are semicolons and, if so, takes those as defining the items that make up the list. If there are no

semicolons, it uses the commas instead.

http://wordmacrotools.com/macros/B/BibSortWithDittos
https://youtu.be/Yx97w8XJ6iE
https://youtu.be/Yx97w8XJ6iE

Also, to make the macro easier/quicker to use, when sorting items (1) or (2), all you have to do is click the cursor

somewhere (anywhere) between the parentheses; the macro automatically finds the extent of the list.

And if you had, say “Andrews and Bloggs, 2007; Saheem, 2013; Darwish et al., 2010”, so that only the final two had

to be reversed (either because of the surname, or because of the date), you could select an area of text from somewhere

(anywhere) in ‘Saheem’ to somewhere (anywhere) in ‘2010’, e.g. the bit I’ve highlighted.

But one issue with this macro is the possible ambiguity in item (3)? [and (4), actually]

 3) The winners are Simons T, Andrews P and Peters V.

How does the macro know if this is a list of two persons or three? Answer: it doesn’t!

And I couldn’t make it automatically split the list at ‘and’ because...

 2) (Saheem 2013, Darwish et al. 2007, Andrews and Bloggs 2010)

would then be treated as four items!

So the macro will ask you, with item (2) [and similarly with (3) and (4)]:

 [Andrews and Bloggs 2010] – Is this a single item?

and you click ‘Yes’ (or just press Enter).

So in cases (3) and (4), you would instead click ‘No’ because it’s two items either side of the conjunction, not a single

item.

But if you’re only using the macro for citations, and this feature annoys you, look at the start of the macro and find:

 allowSplitAtConjunction = True

and change it to False.

Sub SortListInText()

and I suspect this does the exact same thing…
Sub CitationListSortByName()

Sort in-line citations by year
(Video: youtu.be/Yx97w8XJ6iE)

It may be that your client wants groups of citations sorting by date, not by surname, so that

 1) (Saheem, 2013; Darwish et al., 2007; Andrews and Bloggs, 2010)

needs to be sorted to:

 1) (Darwish et al., 2007; Andrews and Bloggs, 2010; Saheem, 2013)

So CitationListSortByYear, does that. Again, you can just click somewhere (anywhere) within the parentheses.

Similarly, if you had:

 2) (Saheem 2013, Darwish et al. 2007, Andrews and Bloggs 2010)

it would be sorted to

http://wordmacrotools.com/macros/S/SortListInText
http://wordmacrotools.com/macros/C/CitationListSortByName
https://youtu.be/Yx97w8XJ6iE

 2) (Darwish et al. 2007, Andrews and Bloggs 2010, Saheem 2013)

Now with reverse order:

To change the chronological order, change the first line to:

sortReversed = False

to get:

 2) (Saheem 2013, Andrews and Bloggs 2010, Darwish et al. 2007)

Sub CitationListSortByYear()

Add item to existing list
(Video: youtu.be/8-nmzpAY5VA)

(Ha! CopyToListAlphabetic is basically a duplicate macro to AddWordToStyleList, which I wrote a few years ago!

But it’s probably better – more flexible.)

STOP PRESS: CopyToListAlphabetic works in a similar way to CopyToList, but it looks through the target file, and

places the word/phrase into the correct alphabetic position in the list.

STOP PRESS: CopyToListAlphaMenu proved so popular that people asked for a version that would add words to

different sections of their stylesheet (or whatever other document). See below the write-up of the first two macros.

If you’re trying to create a list of something-or-other, then this macro copies the currently selected text across into a

different file. The obvious applications for an editor are adding words to a word list, or adding notes to a style sheet.

If you’re collecting items from one list to put into another list, just click on the item – if no text is selected, the macro

assumes you mean copy the current paragraph (i.e. list item).

(However, if you’d rather it assumed you want to copy the current word rather than paragraph then change the line:

copyWholePara = True to False.)

You can have several files open at the time because the macro looks for a file that contains the text ‘list’ (or ‘List’)

somewhere in its filename (and you can, of course, create two copies of this macro, one for ‘list’ and one for, say

‘sheet’ if you’re adding things to a word list and to a stylesheet).

You can change the keyword, using, say:

keyWord = "style"

And also if, like me, you have other “list”s that might be open, you can tell it not to use those. So I often have open a

FReditList and/or a zzSwitchList, so I add:

wordsToAvoid = "FRedit,switch"

Hopefully, you can adjust to suit your way of working.

For some applications, you might want a blank line after the text in the list file; so, at the beginning of the macro, you

can use:

addBlankLine = True

Another option is:

http://wordmacrotools.com/macros/C/CitationListSortByYear
https://youtu.be/8-nmzpAY5VA

includeFormatting = True

So you can either bring across into the list just the text, or you can bring the text with any formatting – e.g. bold or

italic – that is in the text you’re copying.

One user wanted the word(s) to be added, not at the cursor, but always at the end of the list file. If so, use:

alwaysCopyAtEnd = True

If, after adding the word/phrase/paragraph, you want to stay in the list, there’s the option:

goBackToSource = True

which can be changed to False.

If, after adding the word/phrase/paragraph, you want to highlight the item in the original (to remind you which things

you’ve copied, and which not), then swap the apostrophe from:

myHighlightColour = wdColorBlack

' To add highlight, use:

' myHighlightColour = wdYellow

to:

' myHighlightColour = wdColorBlack

' To add highlight, use:

myHighlightColour = wdYellow

i.e. you are making the highlight colour Yellow, not Black.

CopyToListAlphaMenu

If you have different sections of a document to which you want to add words/phrases alphabetically, one way would

be to make, say, three copies of CopyToListAlphabetic, each with a different macro name:

CopyToListAlphabeticWords, CopyToListAlphabeticNames, CopyToListAlphabeticPlaces

Each would have a different line:

followHeading = "Word list"

followHeading = "Names"

followHeading = "Places"

Fine, but that’s three keystrokes to remember. So an alternative is CopyToListAlphaMenu, where you have the three

(or more, if you want) headings, each with a letter/number associated. Run the macro, press the relevant key character

and the word(s) are added to the appropriate list.

Here are the set-ups at the beginning of the macro:

myStyle = "Heading 3"

' Heading words are case SENSitive

myList(1) = "9 Names"

myList(2) = "6 Places"

myList(3) = "3 Word list"

numLists = 3

(You can choose whatever numbers/letters you want, but my choice here of 9, 6 and 3, is ‘an RSI thing’, i.e. those

three keytops are on the numeric keypad and so are the nearest to my right hand, thus minimising hand movement.)

The section names for the three lists are ‘Names’, ‘Places’ and ‘Word list’.

And I decided, after difficulties some people had, to make the macro specify the heading case sensitively, and to also

specify its heading level, e.g. style ‘Heading 3’.

If you wanted four different lists, you would need to add a line: myList(4) = "2 Whatever list" and

change to: numLists = 4

(Personally, I would use the previous method of having three copies of CopyToListAlphabetic – it’s more immediate,

just one single macro-click and no on-screen distraction of a menu appearing.)

Sub CopyToList()

Sub CopyToListAlphabetic()

Sub CopyToListAlphaMenu()

Table stripper
If you have a file that contains tables, and you need to take them all out into a separate file, leaving behind a callout of

the form ‘[Table 4.3 near here]’ (or whatever), this macro will do it for you. The format of the callout is set in the first

line of the macro.

Note: It would be worth running this macro after tidying up the file a bit because a rogue space can sometimes cause it

not to find a table.

It should find the tables regardless of whether the caption is above or below the table.

Sub TableStripper()

Tables to tab-separated text
This macro changes the contents of all the tables into tab-separated text, so:

one two three

four five six

becomes

one two three

four five six

Sub TablesToTabText()

Callout inserter
The aim of this macro is to find the first reference to each figure (or table) and add, at the beginning of that paragraph,

a suitable callout. However, the macro checks for three different versions of each reference (e.g. either ‘Fig. 23’ or

‘Figure 23’ or ‘Figures 23’) as set in the first three lines of the macro. The format of the callout text is set in the line:

Callout = "<Figure XXXX here>", where XXXX is the figure number.

If a given figure number is not cited, the macro stops and alerts you so that you can make a note, and then let it

continue. Of course, when it gets beyond the range of the figure numbers, you just click on ‘No’ when asked:

‘Continue?’

If the text says, say, ‘Figures 4.3 and 4.4 show...’ then it won’t be able to find the 4.4, so it will tell you that it can’t

find 4.4, so make a pencil note and then, when it’s finished, go back and add it in manually.

http://wordmacrotools.com/macros/C/CopyToList
http://wordmacrotools.com/macros/C/CopyToListAlphabetic
http://wordmacrotools.com/macros/C/CopyToListAlphaMenu
http://wordmacrotools.com/macros/T/TableStripper
http://wordmacrotools.com/macros/T/TablesToTabText

If the figure/table numbering has a chapter prefix (e.g. ‘Fig. 4.23’) then answer ‘Yes’ to the ‘Existing chapter

numbers?’ question. However, if there are not any existing chapter numbers, and you want to add them, answer ‘Yes’

to ‘Add chapter numbers?’

If it annoys you to have to answer three questions every time you want to use the macro (it does me!) then use the

alternative lines in turquoise, and use vbYes or vbNo as appropriate.

A basically similar macro follows for use with table callouts.

Sub FigCallouts()

Sub TableCallouts()

Move all figures out into a separate file
If you have a file that contains figures, and you need to take them all out into a separate file, leaving behind a callout

of the form ‘[Figure 4.3 here]’ (or whatever), this macro will do it for you. The format of the callout is set in the first

line.

N.B. It assumes that the caption, ‘Figure 2.5 Diagram of an elephant’, or whatever, is below the actual figure. If you

need it to be the other way round, I’ll have to do a special version. If it would be of help to you, do please ask.

It would be worth running this macro after tidying up the file a bit. For example, if the caption has a space before the

word ‘Fig(ure)’, it won’t find that figure.

The macro may miss the odd figure – I can’t guarantee 100% success, but if it gets to be a problem, send me a sample

file and I’ll try to solve it.

(If your figures are captioned with ‘FIGURE 3.1 etc...’ then you need to change the line myFig = "Fig" into

myFig = "FIG".)

It occurred to me that you might want to have the captions either kept with the main text or placed with the figures (or

both), so this can be set at the beginning of the macro. If you use:

captionWithText = False

captionWithFigs = True

then the caption will only be in the Figs file and not in the main text.

Sub FigStrip()

Edit the contents of table cells
(Video: youtu.be/P-6VdmT2BbE)

This macro started with the need to change all lone hyphens in table cells into em dashes, and then it extended into

editing negative numbers in cells that used hyphens (e.g. -6.3) into proper Unicode minus signs (−6.3).

It can also strip off trailing full points and/or carriage returns and/or tabs (which can cause some real fun problems!)

I’ve added an optional highlight to show where changes have been made (but not where trailing characters have been

stripped off.

If no text is selected, the macro works on all the tables in the document. If part (or all) of one table is selected, it works

on just the selected bit. If several tables are selected, it works on just those tables.

You can customise the macro to some extent:

http://wordmacrotools.com/macros/F/FigCallouts
http://wordmacrotools.com/macros/T/TableCallouts
http://wordmacrotools.com/macros/F/FigStrip
https://youtu.be/P-6VdmT2BbE

stripEnds = True

stripThese = "^p^t., "

This can be changed to False, if you don’t want to strip off training characters, and you can add or subtract

characters from the list.

addEmDash = True

If you don’t want to add an em dash to all the empty cells, make this False.

doHighlight = True

myColour = wdGray25

I’m sure you can work out what these two do.

Sub TableEdit()

Add em dash to every table cell
In my experience, very few authors know that you’re supposed to use an em dash if you’re indicating empty cells in a

table. Most use hyphens or, at best, en dashes. This macro goes through the whole of the text and changes cells with

en dashes or hyphens into em dashes.

As an option, you can either allow empty cells to remain empty, or to put an em dash in them too:

dashIfEmpty = True

Sub TableEmDasher()

Add final character (full point) to every table cell
Someone asked if it was possible to add a full point to the end of every cell of a table. To be more specific, they

wanted to add full points to a selected area of a table – say, a pair of columns, but not the other columns.

The following macro adds full points to just the selected area of the table. If there’s already a full point there, it does

not add a second one.

If you want to add a different character to every cell, you can change the following line accordingly:

myChar = "."

Note: Because of the strange way that Word handles the cells in a table, I’ve had to use a little trick. The first thing the

macro does is to add the ‘shadow’ attribute to the selected cells (you could use a different attribute if you use shadow

for something else). It then looks through the table cells, ignoring the non-shadowed cells, but adding full points to the

shadowed cells. It then removes the shadowing from the whole table.

Sub CellsAddChar()

Add initial capital to every table cell selected
This macro ensures that every cell in the selected range has an initial capital letter.

Sub TableCellsInitialCaps()

http://wordmacrotools.com/macros/T/TableEdit
http://wordmacrotools.com/macros/T/TableEmDasher
http://wordmacrotools.com/macros/C/CellsAddChar
http://wordmacrotools.com/macros/T/TableCellsInitialCaps

Remove/restore borders and rules of table
This removes all the border lines and vertical and horizontal rule of the selected table – and then adds them back if

you run the macro a second time.

Sub TableBordersToggle()

Textbox and frame removal
Authors may use Word frames or textboxes for tables, figures and their captions, or other pieces of text that can

‘float’. These features of Word present traps for the unwary editor: they are invisible in Normal (Draft) view; they are

not affected by global search/replace operations; and they will probably not be correctly imported into typesetting

software. The following macro will convert their contents into normal text, tagged <TBX> for a textbox or <FRM>

for a frame. If you know or suspect that a document contains frames or textboxes, you should run this macro during

the clean-up process. It can save you hours of copying and pasting.

Sub TextBoxFrameCut()

List all styles used in a document
This macro generates an alphabetic list of all the styles that are used in the document, each with an indication of the

page on which that style first occurs, plus the first few (six max) words of that paragraph:

Biblio Title p.332 "Bibliography"

Footnote Text p.123 "Brown 1990, "How the Word files"

Heading 1 p.12 "Introduction"

Heading 2 p.1 "Contents"

Heading 3 p.11 "Other notes:"

Table Grid p.48 "C19 innovations"

The set-up options in the first few lines of the macro are:

' myStyles = "Normal,Default,"

myStyles = ""

Use the first line to list any styles that you don’t want listed.

displayParaWords = True

numWords = 6

If the first is set to False, you don’t get the third column, of the first words of the paragraph.

If it’s True then the second line sets the max number of words to be displayed.

deleteTableBorders = True

The final option, if True, will remove the all the lines you can see in the sample illustrated above.

Apply styles to textboxes
This applies a style to all of the textboxes in a document.

The line myStoryRange.Style = "List Bullet" can of course be replaced by specifying any other style

name, or indeed any other action(s) that you would normally apply to selected text, such as other formatting, or even

find and replace etc.

Sub SetTextBoxStyle()

http://wordmacrotools.com/macros/T/TableBordersToggle
http://wordmacrotools.com/macros/T/TextBoxFrameCut
http://wordmacrotools.com/macros/S/SetTextBoxStyle

Copy text out of text boxes [textboxes] into main body of text
This copies the text out of textboxes and pastes it into the body of the text, hopefully in approximately the right place.

You have the option of inserting the text before or after the anchor paragraph:

placeTextAfterParagraph = True

Change the first line between True and False.

If you need to code/tag the text, it will add a code before and after the extracted text:

beforeText = "<Box>"

afterText = "</Box>"

(and obviously you can change the text used here) but if you don’t want the added tags, change it to:

beforeText = ""

afterText = ""

There’s also an option to highlight all the copied text in your chosen colour:

addHighlight = True

myColour = wdYellow

Sub BoxTextIntoBody()

Footnote (endnote) fiddling
This macro does corrects three ‘funnies’ that an author might put in footnotes or endnotes:

– it removes a space if there is one in front of any note number

– it deletes a trailing space (or two)

– it adds a full point to the end of every foot/endnote that doesn’t already have one (or a !).

Sub FootnoteEndnoteFiddle()

Endnote (Footnote) Fiddling – 2

(This is similar to the previous macro, but checks different things. If either isn’t quite what you want to do, please ask

and I’ll update one or other for you, time permitting.)

People do some funny things in their formatting of endnotes (and footnotes), and this macro was written because one

editor had a file (well, a set of files) where someone had added a blank line between each endnote and the next. You

should, in theory, be able to remove them by find and replace, but it doesn’t always work properly, so I wrote this

macro. But there’s probably an easier way ...

Sub NoteDeleteDblSpace()

Footnote (Endnote) Fiddling – 3

This time the author had made all the footnote numbers italic. You can unitalicise (romanise) the callout numbers in

the text with FRedit using:

^f|^&

but that doesn’t affect the actual numbers of the actual footnotes themselves. We therefore need to use a separate

footnote-fiddling macro:

http://wordmacrotools.com/macros/B/BoxTextIntoBody
http://wordmacrotools.com/macros/F/FootnoteEndnoteFiddle
http://wordmacrotools.com/macros/N/NoteDeleteDblSpace

Sub FootnoteNumberNotItalic()

And if you want these numbers not superscripted, the last line would be:

rng.Font.Superscript = False

and (being really silly), you could have:

rng.Font.Bold = True

rng.Font.Size = 18

rng.Font.Name = "Arial"

Footnote (Endnote) Fiddling – 4

Someone wanted to change the endnote numbers in the endnotes to superscript. This seems to do the trick.

Sub EndNoteFiddleSuperscript()

Footnote (Endnote) Fiddling – 5

Someone else wanted to remove any extra space the author had placed at the beginning of their footnotes. This seems

to do the trick.

Sub FootnoteFiddleStartSpace()

Delete all endnotes
You can delete all the endnotes in a document at once:

Sub DeleteAllEndnotes()

Delete all footnotes
You can delete all the footnotes in a document at once:

Sub DeleteAllFootnotes()

Unembed footnotes or endnotes
The aim of this macro is to extract all the footnotes or endnotes, put them at the end of the file, and replace all the

footnote numbers with ordinary superscripted numbers (but highlighted in turquoise). When I first wrote this macro, I

said, ‘This is clearly not something you want to do if there’s any chance that someone is going to want to add or

remove footnotes, because Word’s automatic renumbering is, of course, lost once this macro has been run.’ However,

someone had files in which the notes had been unembedded, and asked if I would write a macro to reverse the process

– see ‘Re-embed Notes’ below!

[Later: This then means that if you have a file that has problems with the notes, you can unembed them, fiddle with

them (maybe automatically – see below) and then re-embed them.]

Sub NotesUnembed()

Re-embed notes
If your notes are in the form of numbered paragraphs at the end of the document, place the cursor on the first line of

the first note and run this macro, and it will insert them all as proper footnotes. These are now live and so you can add

and delete notes, and Word will now automatically renumber them.

http://wordmacrotools.com/macros/F/FootnoteNumberNotItalic
http://wordmacrotools.com/macros/E/EndNoteFiddleSuperscript
http://wordmacrotools.com/macros/F/FootnoteFiddleStartSpace
http://wordmacrotools.com/macros/D/DeleteAllEndnotes
http://wordmacrotools.com/macros/D/DeleteAllFootnotes
http://wordmacrotools.com/macros/N/NotesUnembed

N.B. It might not work too well if the notes are ‘untidy’, e.g. ensure that there aren’t unnecessary spaces and multiple

newlines (^p) in the notes. And it also can’t deal with notes of more than one paragraph, sorry. Maybe go to the notes

and do a selective F&R of ^p into pqpq, run the macro and then change pqpq’s back into ^p’s.

Sub NotesEmbed()

Unembed endnotes by sections
This does the same sort of thing as NotesUnembed, but it is for the case where the notes are at the ends of each

chapter, and the chapters are set up using Word’s ‘sections’ feature. It can take quite a while to run with a big file, and

even once it has run and beeped to show that it has finished, Word can then still take quite a while to ‘release’ the file.

As far as I can tell, it’s reformatting the file, and won’t give you control back until it has finished.

Sub NotesUnembedBySections()

Renumber all superscripts
...and...

Renumber all note numbers
(These following two macros go together really, hence the weird double title!)

(N.B. The latest version renumbers either just the selected area of text or, if nothing is selected, it will ask if you want

to renumber the whole of the text.)

The next macro goes right through a file looking for all superscripted numbers (which we are assuming are

footnote/endnote markers) and replacing them with a consecutive series of numbers starting from 1.

Obviously, if your text has m2, m/s2 etc (i.e. other reasons for superscripting), then you’ve had it! You can’t use this

macro to renumber the footnotes. Well, you could use FRedit to change all those other superscripted numbers to

something non-superscripted, run this macro, and then put them all back again into superscript.

Then following that is a ‘Renumber all the notes’ macro, the idea being that you have a set of notes, but the numbering

is no longer consecutive, for some reason.

To use it, you just put the cursor somewhere on the first line of the notes (or, indeed, any list of numbered items), and

it goes through and renumbers them all consecutively.

Sub RenumberSuperscript()

Sub RenumberNotes()

Sorting out messed-up footnote numbering
(This uses the previous four macros – it’s just the recipe.)

So, you’ve got a file whose note numbers have got all messed up and are no longer consecutive. The idea of this

rescue package is to change Word’s automatic notes into ordinary editable text; then sort out the numbering, then re-

embed the notes into the text so that, once again, they are using Word’s note facility, and you could switch back from

endnotes to footnotes and change to roman numerals, add and remove notes etc.

This recipe assumes that the notes have Arabic numbering, not roman numerals. What’s more, it assumes that they are

endnotes, not footnotes, so before you start, use Insert–Reference–Footnote… to change to endnotes with Arabic

numerals.

http://wordmacrotools.com/macros/N/NotesEmbed
http://wordmacrotools.com/macros/N/NotesUnembedBySections
http://wordmacrotools.com/macros/R/RenumberSuperscript
http://wordmacrotools.com/macros/R/RenumberNotes

So, the total process is:

0) Change footnotes to endnotes and roman numerals to Arabic numerals.

1) Run NotesUnembed which changes the automatic notes into just ordinary superscripted numbers with notes as a

bunch of (formatted) text at the end of the file.

2) Run RenumberSuperscript to give the citations a set of consecutive numbers.

3) Move down to start of notes and run RenumberNotes to make them consecutive too.

4) Check that all is well, i.e. that you’ve got the same number of citations as notes!

5) Place the cursor on the first line of the first note and run NotesEmbed.

Endnotes/footnotes to inline bracketed text
This macro copies the text (with its formatting) from end/footnotes and places the text in square brackets following the

related note citation.

Sub NotesCopyToInline()

Convert individual footnote to endnote or vice versa
This macro converts the current note from end to foot or vice versa. However, if the cursor is in the main text, it hunts

for the first available note marker (foot or end) and converts that.

Sub NoteFootEndSwitch()

Bracketed notes to embedded footnotes
This macro first deletes any existing embedded notes, then inserts any text that appears in square brackets in new

footnotes, with citations next to the source note (then deletes the text in square brackets).

The previous macro was a request from an editor in India, but when I’d done it, I thought I might as well reverse the

process, as it’s only a few lines of code, but then I realised that this pair might be useful as a way of sorting out

messed up footnote numbering. Worth a shot, anyway!

Sub NotesInlineToEmbed()

Add a footnote (endnote) but in a different style
I prefer to use a keystroke to do most things, so I wanted a macro to add a footnote, to which I could attach a

keystroke. However, someone asked me if it was possible to add a footnote, but using a different style. Answer: yes.

These two macros add a footnote or endnote, but with your specified style name.

Then someone asked if it was possible to add footnotes with [] around the number, as shown here.[3] Answer: yes.

addSquares = True

changeStyle = False

These two lines at the beginning of the macros specify whether or not each feature is used, i.e. as above, the

foot/endnotes will be add with squares round the citation number, but with the default foot/endnote style.

Sub FootnoteAdd()

Sub EndnoteAdd()

http://wordmacrotools.com/macros/N/NotesCopyToInline
http://wordmacrotools.com/macros/N/NoteFootEndSwitch
http://wordmacrotools.com/macros/N/NotesInlineToEmbed
http://wordmacrotools.com/macros/F/FootnoteAdd
http://wordmacrotools.com/macros/E/EndnoteAdd

Renumber any list
This macro renumbers any list within a file, starting from the number of the item at the cursor, i.e. you could start part

way through a list). This contrasts with RenumberNotes (above), which assumes you are numbering from item 1, and

that the list extends right to the end of the file.

So to give the macro chance to know when it has reached the end of the list, it asks for the maximum number of

unnumbered paragraphs that can occur between the numbered paragraphs.

Sub ListRenumber()

Remove numbering from all headings
Santhosh Matthew Paul writes: “I needed to remove numbering from numbered headings in Word 2010 documents.

The headings are styled Heading 1, Heading 2, etc., and the numbering is automatic. I couldn’t see a way to

accomplish this by adjusting a setting in Word, say, by modifying the heading styles. I was only able to change one

heading at a time.

“So, I tried the macro approach. I recorded myself removing the numbering from one heading, and learned that the

key command is: Selection.Range.ListFormat.RemoveNumbers”

Santhosh then wrote a macro; it sort of worked, but had a couple of issues. He shared it with me, and I was able to

smooth out some of the problems. It’s now available for other people to use.

Sub RemoveNumbersFromHeadings()

Delete all bookmarks
Delete all bookmarks in a Word document at once:

Sub DeleteAllBookmarks()

Delete all comments
You can delete all the comments in a document at once:

Sub DeleteComments()

In Word 2002 or later, you can reduce it to a single-line macro:

Sub DeleteComments2()

' Version 18.06.10

' Delete all comments

ActiveDocument.DeleteAllComments

End Sub

And in fact, you don’t even need a macro. Simply assign a keystroke to the Word command

DeleteAllCommentsInDoc. (Tools –> Customize; click Keyboard; select AllCommands in LH window; select

DeleteAllCommentsInDoc in RH window, pick a keystroke and click Assign.)

On the other hand, you might like to use a macro because you can give yourself feedback:

Sub DeleteComments3()

' Version 18.06.10

' Delete all comments

numberCmnts = ActiveDocument.Comments.Count

ActiveDocument.DeleteAllComments

MsgBox("Comments deleted: " & str(numberCmnts))

http://wordmacrotools.com/macros/L/ListRenumber
http://wordmacrotools.com/macros/R/RemoveNumbersFromHeadings
http://wordmacrotools.com/macros/D/DeleteAllBookmarks
http://wordmacrotools.com/macros/D/DeleteComments
http://wordmacrotools.com/macros/D/DeleteComments2
http://wordmacrotools.com/macros/D/DeleteComments3

End Sub

Delete all comments by a specific author/editor
If you have a document with comments by different people, maybe an author and an editor, you might want to delete

the comments of one, but keep the others.

Sub DeleteCommentsSelectively()

Transfer comments from square brackets to bubbles
(Video: youtu.be/2PG7n5MCMCo)

Within the text, the client had placed a load of comments within square brackets. The task was to copy each comment

and insert a comment bubble at that point, and finally place the text of the comment in the bubble.

Sub CommentBracketsToBubbles()

Transfer comments from square bubbles to brackets
(Video: youtu.be/2PG7n5MCMCo)

Having done that, why not write a macro to reverse the process?!

Sub CommentBubblesToBrackets()

Add (and remove) serial numbers to (from) initials in all comments
The idea here is that within the comments, you insert something like “AQ:” as an indicator that this is a comment or

query for the author (or “TS:” for the typesetter).

This macro then goes through all the comments and adds serial numbers to any comment containing an “AQ:” tag.

However, if some of the “AQ:”s already have serial numbers, it assumes, rather, that you want to remove the serial

numbers from all the tags. They will all be restored to just “AQ:”, without numbers, so you can then run the macro a

second time, and it will serialise them again.

Sub CommentsAddIndexOnInitials()

Delete all comments that don’t have tags
The editor then wanted to delete all of the comments (presumably their own temporary comments) that did NOT

contain these AQ tags (numbered or not), leaving just the comments for the author.

Sub CommentsDeleteAllNotTagged()

Delete all comments that DO have a specific tag
(Video: https://youtu.be/gOBpOMbIogU)

The reverse of the above. You can put any tag you like into comments then run this macro and it will delete all those

comments. But obviously you have to choose you tag wisely because comments that are deleted stay deleted! The tag

is set in the firat line of the macro:

http://wordmacrotools.com/macros/D/DeleteCommentsSelectively
https://youtu.be/2PG7n5MCMCo
http://wordmacrotools.com/macros/C/CommentBracketsToBubbles
https://youtu.be/2PG7n5MCMCo
http://wordmacrotools.com/macros/C/CommentBubblesToBrackets
http://wordmacrotools.com/macros/C/CommentsAddIndexOnInitials
http://wordmacrotools.com/macros/C/CommentsDeleteAllNotTagged

myDeletionMarker = "***"

Sub CommentsDeleteSelectively()

Delete all hyperlinks
You can delete all the hyperlinks in a document at once.

Health warning: If your text has equations don’t use this macro; instead use FieldsUnlink, below.

Sub DeleteAllLinks()

Unlink all fields except equations
This macro unlinks all fields except equations.

Sub FieldsUnlink()

Fields codes visible (or hidden)
If you need to, say, edit the URL code behind a link, you can assign a keystroke to the Word command

ViewFieldsCodes – no need for a macro. You just go to All Commands in the Customize Keyboard window, and find

ViewFieldsCodes and assign a keystroke. But...

If you have a large file with lots of links (like this one!!), you may find that, when you make the codes visible, because

there’s now more visible text, the cursor position will have have disappeared way off the screen. OK, if you move the

cursor left or right, the screen will jump back to the right place, and you can see your cursor again. However, when

you switch them off again, you’ll have to the same again!!

So you can use this macro, which will switch the codes on or off, and you’ll still be able to see the current cursor

position – at the bottom of the screen – so you can immediately make your edits.

Sub FieldCodesVisible()

Delete selected hyperlinks
This macro, as written, looks through all the hyperlinks in the text and, if they are URLs, i.e. contain ‘www’ or ‘http’

it does not delete them, but deletes all the rest. This was needed by a client who wanted the hyperlinks to authors’

names to be deleted, but the URL links to be preserved.

If you have a different selective hyperlink deletion criterion, I’m sure we could edit this macro accordingly.

Someone suggested it would be good to see where links had been removed. If you take the apostrophe out of the line

' myColour = wdGray25

then the text of the deleted links will be highlighted in light grey (or change the colour to wdYellow, or whatever you

fancy).

Sub DeleteSomeLinks()

http://wordmacrotools.com/macros/C/CommentsDeleteSelectively
http://wordmacrotools.com/macros/D/DeleteAllLinks
http://wordmacrotools.com/macros/F/FieldsUnlink
http://wordmacrotools.com/macros/F/FieldCodesVisible
http://wordmacrotools.com/macros/D/DeleteSomeLinks

Check each of the URLs
The aim of this macro (I think!) is to check whether each of the URLs in the text appears in the references list. It then

highlights them red or green accordingly. If this is something you might want to do, please send me a sample file, as

the macro will probably need adjusting.

Sub ReferenceCheckWeb()

Citation and bibliography (references list) field conversion
If you have citations automatically linked to a bibliography (references list), and want to turn both into unlinked,

editable text, this macro does the trick. It also has the option (’cos the guy who asked for it wanted it) to turn the

citation into italic. If you don’t, then change the first line to:

makeCitationItalic = False.

Sub UnlinkCitationsAndRefs()

Mendeley citations and punctuation correction
If authors have used the Mendeley reference system, but has placed the citation inside the punctuation, then this macro

corrects it.

Sub MendeleyPunctuationCorrection()

Delete all figures from a file
This macro looks through all the inline images, and looks for a caption that might indicate that it’s a figure with a

caption. If so, it deletes the image.

Sub DeleteAllFigures()

Delete all inline images from a file
This macro looks deletes all the inline images from a file, regardless of what they might be (so don’t say I didn’t warn

you!).

Sub DeleteAllInlineImages()

Delete all inline images from a file and close the space
This macro looks deletes all the inline images from a file, and closes up the space where they were.

Sub DeleteAllImagesAndCloseUp()

Delete all inline images from a file and add a call-out
This macro looks deletes all the inline images (figures, hopefully) from a file, and replaces them with a message, such

as “<Figure 19.3 about here>”.

You can either add the relevant chapter number at the beginning of macro each time, or get the macro to dig the

chapter out of the filename, e.g. “19_Further Explanations”.

Sub DeleteAllImagesAddCallout()

http://wordmacrotools.com/macros/R/ReferenceCheckWeb
http://wordmacrotools.com/macros/U/UnlinkCitationsAndRefs
http://wordmacrotools.com/macros/M/MendeleyPunctuationCorrection
http://wordmacrotools.com/macros/D/DeleteAllFigures
http://wordmacrotools.com/macros/D/DeleteAllInlineImages
http://wordmacrotools.com/macros/D/DeleteAllImagesAndCloseUp
http://wordmacrotools.com/macros/D/DeleteAllImagesAddCallout

Delete all paragraphs that are mainly italic
This finds all paragraphs that are mainly in italic and deletes them. The line

deletionFactor = 6

sets the decision level for deletion, i.e. delete the paragraph if there are (6) times as many italic words as roman words.

Sub ItalicParaDelete()

Convert combo boxes to text
To replace the combo boxes with the text that each is currently displaying you run a very simple macro, provided by

Howard Silcock of New Zealand.

Sub ComboBoxAccept()

Unbold every colon followed by roman text
This is where you’ve got headwords in bold, each followed by roman text, but you don’t want the colon to be bold.

However, you can’t just use global F&R to unbold the colons because there might be colons, say, in bold headings,

where the whole line, including the colon, must remain bold.

So this macro looks for bold colons that are followed by roman text.

Sub ColonUnbold()

Auto-lists to text
This macro converts all Word automatically numbered and bulleted lists to proper numbers and bullets. It makes the

file more suitable for sending to a typesetter: if you don’t do this, the bullets and numbers can sometimes get lost

when the file is imported into the typesetting system.

Sub AutoListOffSimple()

If you want ‘proper’ bullets and not the ones in Symbol font that Word tries to make you use, there’s a more complex

macro that uses F&Rs. It converts the bullets, sub-bullets and sub-sub-bullets to Unicode characters.

Technical details: The code &HF0B7 in the first F&R is for the Symbol bullets. (If you use the WhatChar macro, that

will confirm that the hex is F0B7.) The second F&R is for the tick symbol in the Wingdings font. Again, I got the

F0FC code by using WhatChar.

In both F&Rs, I replace with an ordinary bullet, but you could use a different symbol, e.g.

newCharacter = "*": ' asterisk

If you want to use the same macro (i.e. still use the same keystroke) but without changing the bullets, you can change

the first line to changeBullets = False.

Sub AutoListOff()

Full-out paragraph under all headings
This macro ensures that the first paragraph under each heading is full out by applying a style with no first-line indent.

It uses Word’s built-in styles Heading 1, Heading 2, Heading 3, Body Text and Body Text First Indent as examples so,

if your document uses different styles, you will need to edit the style names accordingly.

http://wordmacrotools.com/macros/I/ItalicParaDelete
http://wordmacrotools.com/macros/C/ComboBoxAccept
http://wordmacrotools.com/macros/C/ColonUnbold
http://wordmacrotools.com/macros/A/AutoListOffSimple
http://wordmacrotools.com/macros/A/AutoListOff

First, make a list of all the names of the styles after which you don’t want an indent. This is in the line:

StyleList = "Heading 1, Heading 2, Heading 3, and any more you want"

Then specify the names of styles for with- and without-indent text:

NoIndentStyle = "Body Text"

IndentStyle = "Body Text First Indent"

Here’s the complete macro.

Sub FirstNotIndent()

Selective format changing
Suppose you have a text where the author has not used styles, but simply applied effects (bold, italic, font size,

alignment etc) on a piecemeal basis. Now, I prefer to edit in a left-justified style rather than fully justified, because it’s

easier to see if there’s any odd spacing – each space is the same size. Now, if the author has centred some paragraphs

and maybe right justified others, you probably want to keep those as they are and only change the fully justified

paragraphs to be left justified. Here’s a macro to do it:

Sub JustifyOFF()

But: you don’t need to use a macro, do you?! You can just use the F&R dialogue box. Leave the Find and Replace

boxes empty, and in the Find, set Format – Paragraph – General – Alignment – Justify, and then in the Replace, set

Format – Paragraph – General – Alignment – Left. The ‘Replace All’ does the rest.

Still, I’ve left the macro in the book, just in case you can use it as a pattern for doing something else on a paragraph by

paragraph basis. I can’t think why, but suppose you want to change all the paragraphs in 14pt bold justified into 12pt

italic left aligned – you couldn’t do that with ordinary F&R! Here’s the macro version:

Sub FunnyChange()

Raised/lowered text to super/subscript
If the author has used the font attribute ‘Raise by 3pt’, or whatever, to indicate superscript and ‘Lower by 3pt’ for

subscript, this macro converts them to proper super/subscript, regardless of how much they have raised/lowered the

text by. It also highlights any changes it makes, in your chosen colour, so that you can keep a track of what it has

done.

Sub SuperSubConvert()

Greek symbol font checker
(This may be redundant in the light of the next macro.)

(N.B. This works for other Symbol fonts too – not just Greek ones. And it also now checks for Wingding fonts, which

it highlights in red.)

There’s a FRedit list for this in the FRedit library (search for ‘greek’), but there may be characters in your text that it

doesn’t yet cover. The best thing to do is run the FRedit list, and then run this macro on a copy of your text (don’t say I

didn’t warn you). It will point up any funny codes that it finds, and offer you the codes ready to extend the FRedit list.

All you then have to do is find the proper Unicode number for the character and add that to the list.

The macro sets up the Find box so that you can look through for any hex codes that it has found for you, copy each

one and add it to your FRedit list.

http://wordmacrotools.com/macros/F/FirstNotIndent
http://wordmacrotools.com/macros/J/JustifyOFF
http://wordmacrotools.com/macros/F/FunnyChange
http://wordmacrotools.com/macros/S/SuperSubConvert

Sub SymbolFontCheck()

Symbol font to unicode converter
MS Word’s Symbol font can be a pain in the proverbial, so the idea of this macro is to completely change every

character that’s in Symbol font into the Unicode character equivalent.

The macro has two modes: Test, where it types the Unicode character equivalent alongside the original, and Normal

where it simply replaces the character with the Unicode character. If you’re nervous that this macro might get some

things wrong, run it first in Test mode on a copy of the text, and check that they are all OK.

This has by no means been an easy macro to write – the shortness of the resulting macro is deceptive! This is because

there are myriad ways in which different versions of Word can ‘mash’ Symbol fonts. Now, there is one feature that I

was nervous of (though I can’t remember what the feature was now!), and so any characters that have this feature are

coloured in red. So just double-check that they have come out as intended.

At the beginning of the macro there is a conversion table, listing the character number of the old Symbol font,

followed by the Unicode number to which it is converted. This list is not exhaustive – it’s just the ones I’ve come

across in my work. So if the macro finds a Symbol font it doesn’t know, it beeps at you and highlights it in turquoise.

If you then find the necessary codes (use the WhatChar macro to find the Symbol font number and search the web for

the required Unicode number), you can add them to the list. But if you’re unhappy to mess with the macro, send me a

sample of the different character – it’s only a couple of minutes’ work to find it.

Sub SymbolToUnicode()

Highlight all ‘funny’ fonts
The idea of this macro is to bring to your attention any characters/words/paragraphs that are not in the main font(s)

used in the file. So in the first few lines of the macro, you name all the fonts you don’t want highlighting.

N.B. This doesn’t seem to work 100%. It works on some fonts but not others. It seems that Word’s Find facility

(which is what the macro uses) doesn’t respond to all font names. That said, because the macro is defining which areas

of text not to highlight, it might highlight more than it should, but it won’t fail to bring to your attention things you’re

interested in.

The macro allows you to specify up to five fonts you don’t want it to highlight.

Sub FontHighlight()

Get rid of ‘rogue’ fonts
Suppose you have a file that’s in, say, Times New Roman (TNR), but there are various places where Arial have been

used, or Garamond, or some such, and you want to restore them to the font used in the Normal style.

This macro reads the name of the font at the cursor (say Arial), reads what the Normal font is (say TNR) and changes

any text in the whole document that’s in Arial into TNR.

Sub FontEliminate()

Get rid of ‘locked’ fonts
This is an obscure problem, but if you’ve experienced it, you’ll know what I mean!

You notice that in a paragraph of, say, Times New Roman a character(s) is in the wrong font (I’ve had them in Calibri,

Cambria, Sim Sun and MS Gothics) but when you select the text around the characters it refuses to change into TNR.

http://wordmacrotools.com/macros/S/SymbolFontCheck
http://wordmacrotools.com/macros/S/SymbolToUnicode
http://wordmacrotools.com/macros/F/FontHighlight
http://wordmacrotools.com/macros/F/FontEliminate

I have tried several ways to fix this, both manually and using macros, and always failed. However, one day I shut

myself in a darkened room, and two hours later, after trying various really complicated ideas, I found a simple one that

worked! Hurrah!

So here are two macros. The first searches from the cursor downwards, to find any paragraph that contains mixed

fonts (though that might be for valid reasons). With the second macro, if you select some text either side of the rogue

character(s), it should make all the characters the same font as the first character. Enjoy!

N.B. FunnyFontClear doesn’t work with track changes switched on, sorry!

Sub FunnyFontFind()

Sub FunnyFontClear()

Funny font full facilities
These ‘funny’ fonts are ‘interesting’ to say the least, so I’ve created a group of macros to try to analyse and fix (if

’twere possible) these funnies.

First we want to know what fonts are being used in a given file, so the first macro finds all the different fonts used at

paragraph, word or character level. Each time it finds a new, different font name, it stops and shows you what it’s

found and where (this will become important later, trust me!).

It types out the list of font names it’s found at the head of the file,

Sub FontLister()

Now we want to strat digging around the file, looking at the use of these different fonts, some of which will be

perfectly valid, of course. So the next macro uses Word’s ordinary Find facility to find “some text in such-and-such

font”.

If you click in one of the font names at the head of the file and run the macro, it will search for that font name.

If you select a bit of text in a given font, it will search for that instead.

Sub FontFind()

Once you’ve got some selected text in one of the funny fonts, and you want to restore it to the base font – Times New

Roman, or whatever – you can use this third macro.

After it (thinks it) has restored the text to a sensible font, you perhaps want to go through the text and find the next bit

of text in the funny font, so as Find is set up, you can just use my FindFwd, or however you move to the next find.

However, if instead you just run this same macro a second time, it detects that you’ve already cleared this bit of text

and so it thinks “Oh, I suppose you mean that I should just move to the next bit of funny font text.” So you click this

macro once to correct the text and a second time to jump to the next bit of funny font text.

Sub FontFunniesClearThisOne()

(This macro sort of half duplicates the macro in the previous section, FunnyFontClear.)

But this is where the fun starts! In my experience (well, in the file I’m working on at the moment), FontLister gives

me:

Arial

Calibri

Cambria Math

MS Gothic

NSimSun

http://wordmacrotools.com/macros/F/FunnyFontFind
http://wordmacrotools.com/macros/F/FunnyFontClear
http://wordmacrotools.com/macros/F/FontLister
http://wordmacrotools.com/macros/F/FontFind
http://wordmacrotools.com/macros/F/FontFunniesClearThisOne

SimSun

Times New Roman

Times-Roman

(Some interesting ‘fonts’, eh?!)

However, when I ask FontFind to find either Arial or Calibri, it denies all knowledge of them. But I know they are

there; I saw them with my own eyes, when I ran FontLister!

If I now try to use Word’s Find window, it says it’s looking for “Font: (Default) Arial” and “Font: (Default) Calibri”,

whereas for the others it says, e.g. “Font: Cambria Math”.

Go figure!

Anyway, one more macro in the set. If you have some characters in, say, MS Gothic, if you select one of them, then

next macro goes through the whole file and reverts all MS Gothic characters to the default font.

Sub FontFunniesClearAll()

Add thin (or other) space to units
If you want to have a thin space in between every number and its unit, e.g. 16 kg, then this macro finds all the

numbers-with-a-unit (whether already spaced or not) and inserts your chosen kind of space – thin, non-breaking,

‘<spc>’ or whatever. It also recognises degree symbols (whether Unicode character or Symbol font) and removes their

space.

The macro needs to know what is or is not a ‘unit’. For example, you don’t want it to use a thin space for “16 men on

a dead man’s chest”. So I’ve used a set of criteria but then there are two sets of exceptions. It sounds complicated, but

once you have it working, all you need to do is add or subtract items from the exceptions list to suit your own

specialist texts.

The criteria are different for different lengths of the word that the macro thinks might be a unit. First, it will assume

that all one- and two-letter ‘units’ need spacing. It will also space all three-letter ‘units’, unless the three letters form a

word that the spelling checker recognises, e.g. ‘16 men’. No ‘units’ of four or more letters will be spaced unless you

specifically list them at the start of the macro.

Here are the suggested exceptions lists as they appear in the macro:

' one- and two-letter words to ignore

ignoreThese = ",a,b,c,d,e,f,g,h,i,j,k,n,o,p,q,r,t,u,v,w,x,y,z," & _

 ",D,E,I,O,X,Y,Z" & _

 ",An,an,as,As,at,be,by,do,en,gh,ie,if,in,In,is,Is,nd," & _

 ",of,no,No,on,On,or,pp,rd,Re,so,So,st,th,to,To,UK,US,vs,we,"

' three-or-more letter words to include

includeThese = "kWh,MPa"

' three-or-more letter words to ignore

excludeThese = "exp,"

' Avoid things like "Fig. 2.3 A view..."

notAfterThese = "Fig,Figure,Table,Box,Section"

So the macro is in a perfectly usable state. If you run it, you might find it misses some units and/or makes some false

positives. In which case, you can refine one or other of the exception lists in the macro.

(Aside: You might think that having ‘kWh’ and ‘MPa’ in the ‘include’ list is unnecessary, since they aren’t proper

words. However, Word’s spellchecker recognises them as correctly spelt words, so they would be ignored if they

weren’t included in the list.)

http://wordmacrotools.com/macros/F/FontFunniesClearAll

Other things set at the beginning of the macro are (1) the colour in which to highlight the spaces, so use

wdNoHighlight if you don’t want the added spaces to be highlighted. (2) the type of space to be used: thin, non-

breaking or textual.

I’ve also added the facility to ‘hide’ text such as reference lists by using the single strikethrough attribute (as I do on

many of my macros). Also, I’ve added a facility where it checks the word immediately before the ‘unit’, and ignores it

for certain words. This is to avoid things like, ‘Fig. 2.3 A view showing...’ being interpreted as meaning ‘2.3 amps’.

Sub UnitSpacer()

Language selection
When changing language, it’s worth doing it using a macro, rather than just clicking on the language change icon.

Why? Well, it’s possible that the author has specifically set the language of some of the various elements of the

document (main text, notes, comments etc.), and the language icon only sets the language of the element where the

cursor is currently placed.

Over the years, I’ve discovered a number of spelling-related problems that people have experienced, and added their

solutions into the macro(s).

Specifically, it sets the language of the text inside textboxes, in footnotes and endnotes and in comment boxes (which

can be a problem in files originating in the Far East) and even in the Normal Style – yes, if someone has specifically

set the language of the Normal style to, say, French, you can click the language change icon to UK English, but the

style for the Normal style stays French (well, it does on my system, anyway: Word 2010).

This might be a belt and braces approach, but it takes no longer to run a macro than to click an icon, so you might as

well be safe and sure.

Plus, as it’s a macro, if you’re using FRedit, you can add a line:

DoMacro|LanguageSetUK

so you don’t forget to change the language.

You can, of course, create a second copy of the macro that sets US English – or any other language.

German versions now added.

Sub LanguageSetUK()

Sub LanguageSetUS()

Sub SpracheDE()

Sub SpracheCH()

(The next four all do more or less the same! Oops!)

Sub LanguageToggle [29.10.21] – Toggles the language setting of (part selected) text

Sub LanguageSetMulti [07.06.23] – Toggles between different language country settings

Sub LanguageSwitch [16.08.23] – Switches the language between two or three alternates

Sub LanguageUSUKswitch [06.10.23] – Switches language between UK and US English

(The last one is for me, as I’m using the [cheap, non-subscription] Word 2021, and the status bar refuses to display the

current language, so this macro displays the language name on the bar as a confirmation.)

http://wordmacrotools.com/macros/U/UnitSpacer
http://wordmacrotools.com/macros/L/LanguageSetUK
http://wordmacrotools.com/macros/L/LanguageSetUS
http://wordmacrotools.com/macros/S/SpracheDE
http://wordmacrotools.com/macros/S/SpracheCH
http://wordmacrotools.com/macros/L/LanguageToggle
http://wordmacrotools.com/macros/L/LanguageSetMulti
http://wordmacrotools.com/macros/L/LanguageSwitch
http://wordmacrotools.com/macros/L/LanguageUSUKswitch

Highlight text not in main language
If you have a file that, you suspect, has bits of text where the language has been changed, you can obviously change

the whole file to a given language using the macros above, but you might want to know exactly which bits of text

have, for some reason, had their language changed. This macro highlights all words not in the language that prevails at

the current cursor position.

For speed, it checks the text one paragraph at a time and if it finds a ‘mixed’ paragraph, it checks that paragraph a

word at a time and highlights the ‘funny’ ones.

Sub LanguageHighlight()

Mark long sentences
If I am asked to shorten over-long sentences, I find it helpful to be alerted to the fact that any given sentence might be

on the long side – it’s one thing less to think about as I’m reading through the text. This macro therefore finds any

sentences longer than a certain number of words and changes the font colour to one of two colours, so that they are

drawn to my attention.

I decided to use two different colours in case two consecutive sentences are over long – it makes it obvious that it’s

two long sentences, not one really, really long sentence.

The choice of colours and the critical number of words are set in the first three lines of the macro.

Sub LongSentenceCheck()

Ensure all sentences have two spaces following
This macro ensures that every sentence has two spaces after it.

Sub DoubleSpaceAfterSentence()

Highlight all questions
One editor wanted all questions to be drawn to their attention while reading through the text. This macro highlights in

green (change it if you like) all sentences that end with a question mark.

Sub HighlightAllQuestions()

Highlight all long quotations
(N.B. These two macros are effectively superseded by QuotationMarker above.)

I was asked if I could write a macro to look for over-long quotes and put them into displayed quote style. It’s a bit of a

big ask if you think about all you do when you find a long quote. I decided as a starter to at least highlight all over-

long quotes – ‘that should be easy’, I thought. Ha! I hadn’t reckoned on apostrophes.

The wordLimit = 50 will set it so that if a quote is 50 or more words, it will highlight it.

The first macro is easy. If your text uses double quotes, there’s no problem (the word limit for highlighting the quotes

is set at the beginning of the macro):

Sub HighlightLongQuotesDouble()

However, if the text uses single quotes, you can find the beginning of each quote easily enough, but how do you

distinguish between an apostrophe and a close single quote – difficult! Of course, haven’t and we’ve etc are easy to

http://wordmacrotools.com/macros/L/LanguageHighlight
http://wordmacrotools.com/macros/L/LongSentenceCheck
http://wordmacrotools.com/macros/D/DoubleSpaceAfterSentence
http://wordmacrotools.com/macros/H/HighlightAllQuestions
http://wordmacrotools.com/macros/H/HighlightLongQuotesDouble

identify, and so is the apostrophe-s: the boy’s book, but it’s the s-apostrophe that is the real problem. If you have the

poets’, is that something belonging to them, or is it the end of the quotation?

What I’ve done, therefore, is simply err on the side of assuming that, say, the poets’ blah blah is an apostrophe, and

carry on searching for another close quote/apostrophe. So if, in fact it was a close quote, the result is to generate a

‘quotation’ which is actually two quotations plus the intervening text. Still, at least it highlights it, so it’s easy for you

to check it out later. And to make it stand out better, I have unhighlighted any apostrophe/close quote mark that is

highlighted in your chosen colour.

(It’s difficult to explain, but it’ll make sense when you see it in action ... I hope.)

Sub HighlightLongQuotesSingle()

Displaying long quotes
If you’ve got lots of long quotes, it’s useful to be able to remove the quotation marks, make it into a displayed quote,

and change the style of the quote, e.g. use a style with left and right margins, and maybe smaller typeface:

This is a meaningless long quote that I’ve made up on the spur of the moment to illustrate what

I mean in the previous paragraph, and it is what I wrote and that’s that, blah, blah, blah.

If some text is already selected when you run this macro, it assumes that this is the text to be displayed. However, if

no text is selected, it searches for the next long quote.

For the displayed text, it uses the style whose name is set at the beginning of the macro, and then if the quote is

currently in the middle of a paragraph, is sets the following paragraph to a style of your choice. This is useful where

most paragraphs have a first line indent, and then you have a zero indent on the following line to show that the

paragraph is still continuing.

displayedQuoteStyle = "DisplayQuote" [Style for displayed paragraph]

nextParaStyle = "Body No Indent" [Style for next paragraph]

' Or if you don't want to change next paragraph style

' nextParaStyle = ""

removeQuotes = True [Remove the quote marks or not]

minWords = 40 [min length of quote for displaying]

singleQuotes = False [single or double quotes]

addTags = True/False [do/don’t add tags]

startTag = "<DQ>" [start and (below) end tags]
endTag = "<\DQ>"

tagOnNewLine = False [Tag on end of displayed para or on next line]

Sub DisplayQuote()

Highlight (and/or style) all indented paragraphs
Another related macro is to highlight those paragraphs that are indented, the idea being to identify the displayed

quotes. The trouble is that you can’t easily use F&R because, often, the author will ‘hand indent’ the quotes. In other

words you don’t know exactly what the magnitude of the indent will be, so F&R is difficult, to say the least.

http://wordmacrotools.com/macros/H/HighlightLongQuotesSingle
http://wordmacrotools.com/macros/D/DisplayQuote

The alternative offered here is simply to highlight (and/or style) all paragraphs that have any indent at all. OK, you

may get some false positives, but it’ll probably be quicker than doing in all manually.

The macro was written to just highlight the paragraphs, but if you use the two turquoise lines it will actually apply the

style to them.

Sub HighlightIndentedParas()

Change the indent of specific indented paragraphs (1)
One reader wanted to find all paragraphs indented by 1.25 cm and change the indent to zero. This macro does so.

Sub IndentChanger()

Change the indent of specific indented paragraphs (2)
Another reader’s client wanted to find all paragraphs with a first line indent and (a) remove the indent and (b) add a

tab stop at 0.25″. This macro does so.

Unfortunately, some paragraphs already had a 0.1″ FLI, so this had first to be remove, or the tab would only take the

text to 0.1″. This is done with:

 .ParagraphFormat.TabStops(InchesToPoints(0.1)).Clear

Adjust to taste. :-)

It also now has the option to use centimetres instead of inch measurements. For this, use:

 useInches = False

Sub FirstLineIndentToTab()

Apply styles to all paragraphs except headings
One reader wanted to apply ‘BodyStyle’ to all paragraphs other than those such as ‘Heading 1’, ‘Heading 2’, etc. But

the paragraph immediately after each heading should be ‘NoIndent’ style. This macro does so.

Sub StyleBodyIndent()

Apply character style to headwords
One reader wanted to apply ‘EntryBib’ style to all paragraphs that have a specific style (‘Normal,Normal full left’).

This macro does so.

Sub FormatHeadwords()

Count the highlighted areas
The purpose of this macro was, originally, to give a way of quickly counting how many serial comma or not serial

comma occurrences there were in a text (see under DocAlyse). I used a FRedit list to highlight one in light grey and

the other in dark grey, and then counted them.

(But DocAlyse has been greatly improved, so this is probably redundant.)

Sub CountHighlightColour()

http://wordmacrotools.com/macros/H/HighlightIndentedParas
http://wordmacrotools.com/macros/I/IndentChanger
http://wordmacrotools.com/macros/F/FirstLineIndentToTab
http://wordmacrotools.com/macros/S/StyleBodyIndent
http://wordmacrotools.com/macros/F/FormatHeadwords
http://wordmacrotools.com/macros/C/CountHighlightColour

Every ‘Normal’ paragraph to ‘Body Text’
(This macro is, of course, redundant because, using the Styles and Formatting pane, you can select all occurrences of

Normal, and then apply the style Body Text. Doh! But I’ve left it in because if you have to change several styles, you

could use this macro as a way of automating it.)

This macro applies the style ‘Body Text’ to every paragraph that is currently in Normal style. Every other paragraph

that is in ‘Heading 1’ or ‘Table Text’ or whatever style remains unchanged.

 Using Body Text rather than just Normal is, apparently, more helpful when importing into InDesign.

The same macro could, of course, be used for changing paragraph between any two named styles.

Sub BodyTexter()

Coding (tagging) every bold heading
If the author has simply made every heading bold, this macro will add a code (myCode1) to each such heading.

Optionally, if you have some of the headings that start with a number and you want those to be a different code

(myCode2), this macro will do the necessary wildcard F&R for you (or you could just put it in your FRedit list).

If you don’t want this optional feature, then set myCode2 = "".

Sub CodeBoldParas()

Adding coding (tagging) automatically
If you have to code the various styles in a document, this macro will do it automatically. Basically, you add whatever

styles you want to the document and then run the macro. It goes through the whole document, paragraph by paragraph,

checks the styles and adds the appropriate coding tags.

If you look at the macro, you’ll see that coding tags to be used are specified by the items in the ‘Case’ list, such as:

 Case "Heading 1"

 startText = "<A>": endText = ""

So you can add whatever style names and tag texts you want. Any style that is not included in your list will not be

tagged.

If you only want a tag at the beginning of the paragraph and not at the end, just use, for example:

 startText = "<A>": endText = ""

Sub AutoTagger()

If you run the macro and then decide that another style type needs coding, you can just add it to the list and rerun the

macro. Any line that is already tagged doesn’t get retagged; it is simply ignored.

If you want the tags to stand out in some way, you can make them bold or larger font size or whatever by extending

the ‘If’ statement at the end of the macro as follows (adjust to taste):

 If rng.Characters(1) <> "<" And startText > "" Then

 rng.InsertBefore startText

 rng.End = rng.End - 1

 rng.InsertAfter endText

http://wordmacrotools.com/macros/B/BodyTexter
http://wordmacrotools.com/macros/C/CodeBoldParas
http://wordmacrotools.com/macros/A/AutoTagger

 Set bit = ActiveDocument.Range(rng.Start, rng.Start + Len(startText))

 bit.Font.Size = 24

 bit.Font.Color = wdColorRed

 bit.Font.Italic = False

 bit.Font.Bold = True

 bit.Font.Name = "Arial"

 Set bit = ActiveDocument.Range(rng.End - Len(endText), rng.End)

 bit.Font.Size = 24

 bit.Font.Color = wdColorGreen

 bit.Font.Italic = True

 bit.Font.Bold = False

 bit.Font.Name = "Arial"

 End If

Add line space after all tables before headings
Sounds a bit odd, but this is for when I’m tagging all hierarchically numbered headings using wildcard find and

replace, for example:

| anything such as 3.4 followed by <tab> or <space> = A head

| and such as 3.4.5 is a B head, etc

~^13([0-9]@).([0-9]@)[^t^32]|^p<A>\1.\2^t

~^13([0-9]@).([0-9]@).([0-9]@)[^t^32]|^p\1.\2.\3^t

~^13([0-9]@).([0-9]@).([0-9]@).([0-9]@)[^t^32]|^p<C>\1.\2.\3.\4^t

So, the trouble is that these F&Rs don’t work if a table immediately precedes the heading, because the table doesn’t

end in a conventional newline (^p or ^13) character. The idea then is to look through all the tables and add a newline

after any table that is immediately followed by a heading.

Sub TableSpaceBeforeHeading()

Coding (tagging) displayed quotes
If the author has helpfully indented the displayed quoted, then even if they’ve not used a style, you can code (tag)

them automatically. This macro looks for any paragraph(s) that have a left indent and adds <disp> in front and </disp>

at the end (you can change it to whatever text you want).

<disp>The codes are added in the positions as shown in this paragraph, but if you want the </disp> tag to be on the

beginning of the next paragraph, just let me knw; it’s a simple enough tweak to make to the macro.</disp>

And if the quote consists of multiple paragraphs, the macro removes the </disp> and <disp> that occur in between two

indented paragraphs, so you end up with one tag at the beginning of the quote and one at the end.

Sub CodeIndentedParas()

Coding (tagging) bulleted list
If bulleted lists are in Normal style (and not, say, ListBullet), you can tag/code them by the fact that they have a

negative first indent. Run the macro, and all the bulleted lists will come out as:

<BL>• This is the first line.

• Second line

• Third line

• Fourth line

• Fifth line

http://wordmacrotools.com/macros/T/TableSpaceBeforeHeading
http://wordmacrotools.com/macros/C/CodeIndentedParas

</BL>

Sub TagBulletLists()

Formatting numbered list item
This is one I use when I’m working for a publisher that likes lists numbered as:

1. This is the first line.

2. Second line

3. Third line

4. Fourth line

5. Fifth line

But the authors have used:

1) This is the first line.

2) Second line

or

(1) This is the first line.

(2) Second line

So the macro corrects it line by line.

Sub ListItemNumberFormatter()

Adding bold to first word of list (glossary)
If you have, say a list of words with their definitions, and you want each of these headwords to be bold, this macro

does it for you.

Sub BoldFirstOccurrence()

Using manual line breaks in and poetry (verses) and/or lists
If you have a poem that is formatted using double returns between verses, the formatting can be problematic. This can

by changed using manual line breaks after each line within each verse, and a single return (end-of-paragraph, ^p)

between verses.

So, if you click in the first line of the first verse, and run this macro, it will change the returns to line breaks (^p to

^11) for each line, except the last, and will remove the double return at the end.

If the macro is assigned a keystroke, then you can click, click, click your way through the poem. However, if you

select the whole poem, from somewhere in the first line to somewhere at the end (you can be quite approximate in

your selection) and run the macro, it formats the whole of the selection in one go.

The same macro can also be used for a list or lists.

Sub VerseListFormat()

Adding (coloured) tags to all italic/bold text
Some publishing clients want all italic text to have tags before and after in colour, as <i>shown</i> here. So this

macro goes through the whole file and adds such tags. (And ditto for bold.) You can do italic and/or bold by setting

the two variables at the beginning, e.g. for italic but not bold:

http://wordmacrotools.com/macros/T/TagBulletLists
http://wordmacrotools.com/macros/L/ListItemNumberFormatter
http://wordmacrotools.com/macros/B/BoldFirstOccurrence
http://wordmacrotools.com/macros/V/VerseListFormat

doItalic = True

doBold = False

Sub ItalicBoldTagger()

And a more comprehensive version that covers bold, italic, sub- and superscript, underline and strikethrough:

Sub TagVariousAttributes()

Adding (coloured) tags to selected text or to next bold text
If the previous macro – doing the tagging globally – is not suitable, this macro speeds up local, individual tagging. It

has two mechanisms.

If no text is selected, it zooms along the line to find the next bit of text in bold, and adds coloured tags to it.

If some text is selected, it tags it.

(The macro could easily be changed to tag the next italic bit, instead of bold. If you’re not sure how, do just ask me.)

Sub TagSelectedOrBold()

Adding an <ni> tag to the first line after each heading
If you want a no-indent tag (e.g. <ni>) after each heading, i.e. before the next paragraph, then this macro does it for

you.

Sub TagNI()

Listing all tagged section headings
(Video: youtu.be/DnG1XCuOUlk)

If you’ve applied tags <A>, , etc to your section heads (using FRedit?), then one way to check that they are

correctly numbered is to create a list of all the paragraphs that start with <A>, , etc.

The list might also be used for a contents list, but the ContentsListByTag macro is better for that as it deletes the tags

and formats the list. If you just want to check the numbering then this is a lot quicker than ContentsListByTag.

If it would be helpful, you can create a copy of the macro, call it ListOfTaggedHeadingsTextOnly, then run them both,

at the end of your FRedit list:

DoMacro|ListOfTaggedHeadingsTextOnly

DoMacro|ListOfTaggedHeadings

Then you end up with a pure text version, and one with formatting – but I guess you could just do it formatted and

then take the formatting off with NormaliseText.

If you then want to check that the numbering is properly hierarchical and contiguous, you can use

NumberSequenceCheckerHierarchical, although you’ll first have to strip off the tags:

~\<[ABCDE]\>|

Sub ListOfTaggedHeadings()

http://wordmacrotools.com/macros/I/ItalicBoldTagger
http://wordmacrotools.com/macros/T/TagVariousAttributes
http://wordmacrotools.com/macros/T/TagSelectedOrBold
http://wordmacrotools.com/macros/T/TagNI
https://youtu.be/DnG1XCuOUlk
http://wordmacrotools.com/macros/L/ListOfTaggedHeadings

Adding full point to ends of captions
One publisher I work for insists that all figure and table captions should have a full point, whether the text forms a

sentence or not. This macro looks for a specific tag (<Cap>, but you can change it) and, if necessary, adds a full point.

Sub FullPointOnCaptions()

Adding styles to numbered headings
If your text uses various levels of numbered headings, subheadings and subsubheadings – 1.2, 1.4.1, 1.2.1.6 etc then

this macro will look at each heading, decided what level it is from the number of full stops in the heading number, and

style the heading accordingly: Heading 1, Heading 2 etc.

N.B. It assumes that there is a tab character after the heading number. If the text has a space, then change the

‘delimiter’ at the start of the macro.

It works so quickly that I’ve added a beep at the end so that you know it has finished. If you are changing heading

levels, by adding and subtracting numbers then you can, of course, change the heading style manually, but you can

just as easily run the macro to ‘refresh’ the heading styles.

Sub HeadingStyler()

Coding the first lines of a chapter
This is just a macro I ran up for a specific job, but it’s maybe something you could adapt and use in your own

situation. Each chapter started with, something like:

6
Visual Attention in Coding
Joe Bloggs and Fred Brown

The Concept of Visual Attention

Visual attention is, blah, blah, blah

So I was coding it, by adding the same codes in each chapter. (Doing something over and over again => use a macro.)

In this case, I’ll break my normal rule, and not put the macro separately at the end of the book, but rather put it here so

you can see how it works and therefore, hopefully, be able to modify it for your own use.

Sub CodeFirstLines()

' Version 05.12.12

' Prepare the file by adding codes etc

code1 = "<CN>"

code2 = "<CH>"

code3 = "<CA>"

code4 = "<A>"

myLine = 1

For Each myPara In ActiveDocument.Paragraphs

 If Len(myPara.Range) > 1 Then

 If myLine = 4 Then

 myPara.Range.InsertBefore Text:=code4

 Exit For

 End If

 If myLine = 3 Then

 myPara.Range.InsertBefore Text:=code3

 myLine = 4

 End If

 If myLine = 2 Then

http://wordmacrotools.com/macros/F/FullPointOnCaptions
http://wordmacrotools.com/macros/H/HeadingStyler
http://wordmacrotools.com/macros/C/CodeFirstLines

 myPara.Range.InsertBefore Text:=code2

 myLine = 3

 End If

 If myLine = 1 Then

 myPara.Range.InsertBefore Text:=code1

 myLine = 2

 End If

 End If

Next myPara

' Set 1.15 spacing

Set rng = ActiveDocument.Content

rng.ParagraphFormat.LineSpacing = ActiveDocument.Styles("Normal").Font.Size *

1.15

' Set language UK

ActiveDocument.TrackRevisions = False

Set rng = ActiveDocument.Content

rng.LanguageID = wdEnglishUK

rng.NoProofing = False

ActiveDocument.Styles("Normal").LanguageID = wdEnglishUK

' Switch on track changes

ActiveDocument.TrackRevisions = True

End Sub

So the macro first adds codes to each of the first four paragraphs. Then it sets the line spacing of the whole file to 1.15

lines (obviously you can use a different spacing, or delete it altogether.

Then it sets the language for the whole file to UK English. (It switches off track changes before doing so; otherwise it

will generate unwanted ‘Formatted: English (U.K.)’ track changes.)

Then finally, it switches track changes on, because that’s what I needed for that job.

Showing style names within text (= adding style codes)
I wrote this macro because I was frustrated that the only way to make style names visible on screen is to go into Draft

mode, and I hate working in Draft mode! So what this macro does is to add the style names, as text, at the beginning

of every (non-Normal style) paragraph:

<|Heading 2|>This is a sample heading

As Fred Bloggs, that famous expert, once said:
<|Displayed quote|>This is a dummy quotation saying nothing but illustrate the

principle of what I’m trying to do here.

I’ve used the hopefully unique combination of angle brackets and a vertical bars so that if you run the macro a second

time, it recognises that the file contains these visible style names and deletes them all. So the macro is like an on-off

switch for these visible style names.

Obviously, you don’t want Normal style showing, but if there are others you don’t need to see, just add them to the

noShow list:

noShow = ",Normal,"

noShow = noShow & "TOC 1,TOC 2,TOC 3,Table of Figures,"

You can add names to the list, but just be sure to keep the commas as separators.

Then I thought it would be good to allow abbreviations – to make the names less intrusive. So instead the heading

above could be:

<|H2|>This is a sample heading

But hang on! If you set Heading 1 as A, Heading 2 as B, Displayed Quote as DQ etc, then take away the vertical bars,

that’s what you want for typesetting codes:

This is a sample heading

So that’s the other job you can use this macro for: coding your text. If you have

removePads = True

at the beginning of the macro then, when it has added the codes, it will ask if you want it to also remove the pads.

The abbreviations/codes are set at the beginning of the macro:

abbrvs = ",MTDisplayEquation,Disp,Heading 1,A,Heading 2,B,"

abbrvs = abbrvs & ",Heading 3,C,Heading 4,D,"

If you add/subtract abbreviations, just make sure that you have a comma before and after each name or code.

Sub ShowStyles()

Simple number sequence checker
(Video: youtu.be/2hrfWRyDx18)

This is a very simple macro that looks to see if a series of numbers, whether as a numbered list, or numbers within a

paragraph are consecutive. So it will spot errors such as this:

There are ten reasons for this: (1) ksjhgkjdhf (2) skjdf ghdsfgdkjsf gkjd (3) hadk hg

kajdhsfkj asd (4) fg kjdf (5) mngfngndng (6) ahsd fakj fkj (7) akjhsd g gmj dfg

(9) ghskdfhgkhsfkjdgh (10) jahsdgfhfj akj

or this:

There are ten reasons for this:

1. ksjhgkjdhf

2. skjdf ghdsfgdkjsf gkjd

3. hadk hg kajdhsfkj asd (Smith 2016)

4. fg kjdf

5. mngfngndng

6. ahsd fakj fkj (Brown 1989)

7. akjhsd g gmj dfg

9. ghskdfhgkhsfkjdgh

10. jahsdgfhfj akj

It will ignore years, so in the list above, it won’t be distracted by the citations. This is set by the line at the beginning

of the macro:

dateStart = 1800

So if it’s dates that have to be consecutive, you can change it to, say, dateStart = 100000.

Sub NumberSequenceCheckerSimple()

Decimal number sequence checker
(Video: youtu.be/2hrfWRyDx18)

http://wordmacrotools.com/macros/S/ShowStyles
https://youtu.be/2hrfWRyDx18
http://wordmacrotools.com/macros/N/NumberSequenceCheckerSimple
https://youtu.be/2hrfWRyDx18

This macro check that a series of decimal numbers is ‘consecutive’, so it will spot the error in this:

There are ten reasons for this: (2.1) ksjhgkjdhf (2.2) skjdf ghdsfgdkjsf gkjd

(2.3) hadk hg kajdhsfkj asd (2.4) fg kjdf (2.5) mngfngndng (3.1) ksjhgkjdhf

(3.2) skjdf ghdsfgdkjsf gkjd (3.3) hadk hg kajdhsfkj asd (3.4) fg kjdf

(3.5) mngfngndng (3.6) ahsd fakj fkj (3.7) akjhsd g gmj dfg

(3.9) ghskdfhgkhsfkjdgh (2.10) jahsdgfhfj akj

or this

There things in different chapters:

2.1 ksjhgkjdhf

2.2 skjdf ghdsfgdkjsf gkjd

2.3 hadk hg kajdhsfkj asd

2.4 fg kjdf

2.5 mngfngndng

3.1 ksjhgkjdhf

3.2 skjdf ghdsfgdkjsf gkjd

3.3 hadk hg kajdhsfkj asd

3.4 fg kjdf

3.5 mngfngndng

3.6 ahsd fakj fkj

3.7 akjhsd g gmj dfg

3.9 ghskdfhgkhsfkjdgh

3.10 jahsdgfhfj akj

I’ve set it up so that when it gets to the end of a list, it doesn’t search too far through the text before it finds something

that’s ‘not consecutive’. The distance it travels before it gives up is set by:

tooFar = 3000

That’s 3000 characters, so about 500 words.

Sub NumberSequenceCheckerDecimal()

Number sequence checker hierarchical
(Video: youtu.be/DnG1XCuOUlk)

If you have a long, numbered list and you want to check that there aren’t any missing (or extra) numbers, simply place

the cursor on the first item (or indeed any item further down the list) and run the macro. It will do its best to see what

the pattern is (e.g. a number and a space, or a number and a tab), and then go down the list number by number.

If it finds an error, it stops – and optionally highlights the numbers that it thinks are not in sequence. You can sort it

out and then start again from whichever item you like.

It will even work with, say, Figure 1, Figure 2 etc, or Table 1, Table 2 etc.

What’s more, if your document has ‘dotted’ section numbers (or figure or table numbers) at various levels (e.g.

2.3.6.1), then the macro checks the numbering, in and out of all of the different levels of heading.

In use

If you start from a line that says, for example

Figure 2.4 This is a picture of an elephant

http://wordmacrotools.com/macros/N/NumberSequenceCheckerDecimal
https://youtu.be/DnG1XCuOUlk

It looks to see what comes before the number (“Figure<space>”) and what the character immediately following is

(here a tab), and it looks to see that the next “Figure ” (or whatever word is used) is either 2.5, or 2.4.1 (more likely

with section numbering than with figures).

So if we were to start at, say, section 3.4.5.2, it would check whether the next one was 3.4.5.2.1 or 3.4.5.3, or 3.4.6 or

3.5 or 4.1.

And there’s even an option (allowSingleNumbers = True) to go down to the next single numbers – in this

example it would be 4. The only trouble with that is that it’s more likely to get confused and find an ‘error’ in the

consecutivity that is just some other text within the flow of the document.

And it also tries to cope with the fairly frequent case where a paragraph starts with, say, “Figure 3.4 shows that...”.

This wouldn’t be a problem if the captions used a tab after the fig number – as above – but if the caption uses a space,

the paragraph might then look like a caption. To try to give some discrimination, there’s a parameter

(captionWordsMax = 30) that sets the maximum number of words which it considers to be a caption as opposed

to a paragraph. Clearly, this might need to be increased if you were checking, say, a references list.

Errors to watch for

If the program stops, and it has not reached the end, it highlights the last ‘acceptable’ number (turquoise) and the

number it thinks is erroneous (red). Now, if, for example, a heading has a space instead of a tab, it will be ignored, so

the macro will jump to the following heading and say that that heading is out of sequence, so always check the

previous heading, as well as the one on which the macro stops.

When the macro stops, the Word’s Find function is set up for you with the wildcard find needed to jump from heading

to heading, so you can jump back and forth between the ‘headings’.

It might actually be worth having formatting showing (Ctrl-Shift-8) because spaces and tabs are crucial. For example,

a redundant space after the number and before the tab would be invisible but would cause an error. (But then, as part

of your tidy-up of the file, you will presumably have changed ‘^32^t’ into ‘^t’, won’t you?!)

Phantom errors

False positives can sometimes be caused by track changes in the heading, so make sure that track changes are visible,

and then just try accepting the track change on the heading, then go back to the previous heading and run the macro

again.

The macro can sometimes have problems when it gets into tables, and it may well not be able to cope with textboxes.

It should navigate its way out of each table, but if it gets stuck in a loop, stop the macro (Ctrl-Break†), and click on

‘End’. Then manually check the heading number above the table, move past the table to the next heading and carry on

from there.

(†If your keyboard doesn’t have a Break key, you can still stop a macro mid-program. If you run the macro with the

VBA window open and visible on screen, then you can use the stop ‘■’ icon to stop the macro running. STOP

PRESS! I’ve just discovered that, while a macro is running, yes, don’t move the mouse, but you can use the keyboard

– press Alt-F11, VBA will then open, and you can press pause ‘||’ or stop ‘■’. Yay! Result!)

If you have a file on which the macro founders, and you’d like to use the macro for similar jobs, please send me a

sample file (confidentiality permitting, of course), and I’ll try to find a way of enabling the macro to cope with the

extra complications.

Sub NumberSequenceCheckerHierarchical()

Contents list creator by style or number or tags
(Video: youtu.be/DnG1XCuOUlk)

http://wordmacrotools.com/macros/N/NumberSequenceCheckerHierarchical
https://youtu.be/DnG1XCuOUlk

Continuing on the theme of numbering, it can be useful sometimes to create a contents list of a whole document. Here

are two macros that do that. The first tries to create the contents list on the basis of the style, specifically paragraphs

that are in styles such as ‘Heading 1’, ‘Heading 2’ etc.

The second works on the basis of hierarchical heading numbering.

If the heading levels are tagged <A>, etc the third creates a contents list based on those tags.

I wrote the macros some long while ago (and forgot to put them in my book) in order to check and compare all the

headings, rather than to actually generate a real-live contents list, so neither macro currently has the facility to exclude

headings at lower levels within the hierarchy. So, if your client wants a contents list of only, say, level 1 and level 2

headings, rather than sit there deleting the lower level headings, let me know, and I’ll add in an exclusion option.

Sub ContentsListerByStyle()

Sub ContentsListerByNumber()

Sub ContentsListerByTag()

Find mismatched parentheses
This macro EITHER goes through the text (starting at the cursor) a paragraph at a time and checks to see if any of

them has unpaired brackets, i.e. a different number of open and close brackets (parentheses, I mean). It reports how

many such paragraphs it has found, and these paragraphs have the underline attribute added.

It also sets up the F&R so that is ready to find any underlined text, so you can skip through them one by one.

OR it starts from the cursor and searches out the next possible mismatch, allowing you to ignore it and continue, or

stop and correct it. For this mode, set at the start of the macro:

stopEachTime = True

Sub MatchParentheses()

And a square bracket version.

Sub MatchSquareBrackets()

Find mismatched double quotes
This macro goes through the text a paragraph at a time and checks to see if any of them has unpaired double quote

marks, i.e. either (a) a different number of open and close curly doubles, or (b) an odd number of non-curly double

quotes. It reports how many such paragraphs it has found, and these paragraphs have the underline attribute added.

Sub MatchDoubleQuotes()

Find mismatched single quotes
(Latest version allows it to be used in Dutch, which uses single quotes in far more places than English.)

This macro goes through the text a paragraph at a time and checks to see if any of them has unpaired single quote

marks, i.e. either (a) a different number of open and close curly singles, or (b) an odd number of non-curly single

quotes. It reports how many such paragraphs it has found, and these paragraphs have the underline attribute added.

BUT, as you’ve probably just realised, this isn’t as easy to check the single quotes because of apostrophes, as

demonstrated by this paragraph! But I’ve tried to cover as many eventualities as possible.

http://wordmacrotools.com/macros/C/ContentsListerByStyle
http://wordmacrotools.com/macros/C/ContentsListerByNumber
http://wordmacrotools.com/macros/C/ContentsListerByTag
http://wordmacrotools.com/macros/M/MatchParentheses
http://wordmacrotools.com/macros/M/MatchSquareBrackets
http://wordmacrotools.com/macros/M/MatchDoubleQuotes

It underlines all “suspect” paragraphs, but if it’s suspect because there’s an s-apostrophe, it highlight just the s-

apostrophe, whereas if it’s more sure there’s a problem, it highlights the whole paragraph.

If you want to use it for other languages that use single quotes in different places, you can adjust the line at the

beginning of the macro:

myList = "'s,s','t,'v,'r,'l,'m,'d,'y,'c": UK list

' myList = "'i,'k,'m,'n,'s,'t,'r,'n": Dutch List

Sub MatchSingleQuotes()

Correct double quotes inside double quotes to singles
If the author has used double quote marks inside double quote marks then this macro will go through the whole

document and replace the inner quote marks with singles.

Sub QuoteMarkEmbedder()

Section number adding
Another macro linked to the ones above is where you’ve got to add consecutive section numbers to the subsections

following a section heading. Here’s an example text:

 1.9.6 This Title has a Number Already

 This is a subheading

 Here is the text in this subsection etc, etc...

 Here is another subheading

 And some more text etc, etc...

 Then yet another

 Here’s yet more text etc, etc...

So, to use this macro, you select ‘1.9.6’, copy it with Ctrl-C and run the macro. Because some text is selected, it

knows you’re in setup mode, so it suggests a start number for the series of headings. You can press Return to accept

the offered number, or enter a different number. In this case you’d want it to be ‘1’, but you might want to add some

heading numbers to an existing run.

You now place the cursor somewhere on the first subheading and run the macro. It will add ‘1.9.6.1<tab>’ to the start

of the line. Then place the cursor somewhere on the second subheading and you automatically get ‘1.9.6.2<tab>’, and

then on the next ‘1.9.6.3<tab>’.

Now suppose that you have a run that ends with, say, 2.2.5, and you want to continue it, select the ‘2.2’ and copy it –

the base number – then select the ‘5’ and run the macro. It reads the ‘5’ and offers you ‘6’ as a possible next number.

So, if you accept that and then click on the next heading, it will, indeed, be numbered as 2.2.6.

Sub AddSectionNumber()

Automatic section numbering
If the text has headings styled as Heading 1, Heading 2, Heading 3 etc then this macro adds the hierarchical section

numbers, starting from the first ‘Heading 1’ style paragraph.

However, if you have prelims that use Heading 1, you can avoid them getting numbered by putting chapWord =

"Chap" at the beginning of the macro. (This is assuming that each chapter starts with ‘Chapter 1’ etc, but if you don’t

have a standard word for each chapter, I’ll have to make a small rearrangement – let me know.)

http://wordmacrotools.com/macros/M/MatchSingleQuotes
http://wordmacrotools.com/macros/Q/QuoteMarkEmbedder
http://wordmacrotools.com/macros/A/AddSectionNumber

If the file starts from, say, chapter 4 then change to chapNum = 4 at the beginning of the macro.

If you don’t want the Heading 1 heading to be numbered, but just to have the Heading 2’s as 1.1 etc then put

addChapterNum = False at the beginning of the macro.

Sub NumberParasAuto()

Automatic section numbering (2)
In this case, the numbering is for tagged headings, and for first level headings only (’cos that’s what the person

wanted, who asked for it). It reads the chapter number from the first line of the file, which was, e.g. “<cn>3”. The tag

text is set in the line: myTag = "<a>".

Sub NumberParasTagged()

Semi-automatic section numbering
(Video: youtu.be/1O8Q-3ys1uo)

I had a job where the headings were not numbered, and they weren’t in the correct case (the client wanted title case,

and the authors had used sentence case). Also some of the headings had full points and other punctuation at the end of

the line. In some chapters the only indicator of heading level was the font size so I created two new macros, the first of

which jumped down to the next heading (i.e. paragraph) that was in a font size larger than the Normal font.

The main macro here is one that types in a section number, plus a tab, and formats the heading, removing any stray

punctuation.

So I jump to the next heading then run this numbering macro. It tries to give me the section number that it thinks is

right. If it’s not, I can type into the input box the number I want, e.g. 3.1 and press Enter.

Then I jump down to the next heading (or just click in it if it’s visible on screen) and run the macro. It offers me 3.2,

so if it’s the same level heading then I just press Enter and carry on to the next heading, for which it offers me 3.3.

But if the next is a lower level heading, I type “-” and press Enter, and it gives me 3.2.1.

Maybe the next is the same level, so I accept 3.2.2. But then if the next heading is a higher level, I type “+” and Enter,

and it types in 3.3.

If I get a section number wrong, I can just delete the number, rerun the macro and type in the correct number.

However, I don’t trust myself to get it right! So instead I can go back up to the previous heading and run the macro;

now, because the heading is already numbered, the macro knows to read the section number, and not add another one.

Then I can move back down to the incorrectly numbered heading, delete the number and run the macro; it will then

increment the section number it has just read, and I can carry on as before.

If I need to move up two levels of the heading hierarchy, I can just type “++”.

As it stands, the macro asserts title case, but if you want sentence case (or you don’t want any changes of case), you

can alter the settings at the beginning of the macro:

doSentenceCase = False

doTitleCase = True

Sub TypeSectionNumber()

Sub FindNextBigText()

http://wordmacrotools.com/macros/N/NumberParasAuto
http://wordmacrotools.com/macros/N/NumberParasTagged
https://youtu.be/1O8Q-3ys1uo
http://wordmacrotools.com/macros/T/TypeSectionNumber
http://wordmacrotools.com/macros/F/FindNextBigText

Do ‘such and such’ to every ‘so and so’
Sorry, that sounds a bit weird, but this macro is a ‘shell’ for the more adventurous. You want to go through a text

finding something specific using F&R, and then you need to do something to each one – i.e. something more than just

replacing it with something else.

You’ll have to have enough macro programming to know how to do to the text whatever you want to do to it, but at

least this gives you the skeleton. The format is:

Find ‘something’

Do (if you’ve found one)

 Make some changes to it

 Find the next ‘something’

Loop

I hope that makes sense.

As it stands, it looks for each ‘e’ (or ‘E’) and if it finds it, it uppercases (or lowercases) it and adds a yellow (or red)

highlight. (A silly example, I know, but it illustrates the If...Then possibilities.)

Sub FindAndDo()

Sample practical FindAndDo application

One reader discovered that some global F&Rs trip over the track changes. ‘I want to change the hyphen in number

ranges to a dash. So that’s Find: ([0-9])-([0-9]) and Replace with: \1^=\2. The macro works until I turn on track

changes on and then “4-9” changes to “49–”! How can I avoid that?’

The answer is that you have to use FindAndDo to find each occurrence and the select the hyphen and type a dash

instead.

Sub SampleFindAndDo()

Multiple choice answer tidier global
If you have a file full of answers looking like this:

8. Electron transport occurs in the cells:

A. Nucleus.

B. Mitochondria.

C. Cytoplasm.

D. Golgi apparatus.

E. Plasma membrane.

Answer: B

Type: MC

Points: 1

And you want all the answer items to look like this:

8. Electron transport occurs in the cells:

A. nucleus

B. mitochondria

C. cytoplasm

D. golgi apparatus

E. plasma membrane

Answer: B

Type: MC

Points: 1

http://wordmacrotools.com/macros/F/FindAndDo
http://wordmacrotools.com/macros/S/SampleFindAndDo

i.e. to strip off all the rogue spaces/full points etc off the ends and to lowercase the initial letter, then the following

macro will go through the whole file and do so.

(OK, yes, you’ll have to go back and uppercase words like Golgi, but that should take less time than doing this item-

clean-up manually.)

It assumes each item is A B C D or E followed by a full point followed by a space or tab, and it has a list of erroneous

characters that it will strip off the end. These are set in the macro. Please adjust to taste.

As standard, it also highlights the items it has changed, but you can switch that off with: myCol = 0.

Sub MultiChoiceTidierGlobal()

If you prefer to do this one question at a time, there’s a second version.

You run it once and it jumps to the first set of answers, conditions them and stops. If you’re happy with the result (i.e.

no need to uppercase, say, Gogli), then you just run the macro again, and keep running it until you get a question

where you need to change something.

Sub MultiChoiceTidierSingle()

Highlight all serial commas (or not serial commas)
(This macro could well be superseded by SerialCommaAlyse.)

This assumes that you want to have drawn to your attention, as you read, any text that might be using a serial (Oxford)

comma when the brief says ‘no serial comma’. Or contrariwise highlight the not-serial-comma text if the brief tells

you to use serial commas.

It’s not obvious to the computer exactly what is and is not a serial comma; consider for example:

1) “I like fish, chips, and peas”

2) “The job entails drilling a hole, countersinking it to the correct depth, and inserting the screw.”

3) “The job is difficult, so you will have to be very careful how you approach it, and it takes a long time.”

So what the macro does is to look for the pattern of commas and words plus the word ‘and’, and it then checks how

many words there are in the section of text it has found. If there are too many words, it ignores it.

maxWords = 10

Increase the value of maxWords and you get more false positives, but miss fewer actual (not)-serial commas, and

vice versa.

The macro does the test for both ‘and’ and ‘or’.

You can do the ‘highlighting’ either with underlining and/or actual highlights. This is set at the beginning of the

macro, where it says, for example:

 doUnderline = True

 doHighlight = False

 myColour = wdYellow

So you change it to, say:

 doUnderline = False

http://wordmacrotools.com/macros/M/MultiChoiceTidierGlobal
http://wordmacrotools.com/macros/M/MultiChoiceTidierSingle

 doHighlight = True

 myColour = wdYellow

and change the colour if you prefer:

 myColour = wdBrightGreen

Sub SerialCommaHighlight()

Sub SerialNotCommaHighlight()

Count the serial commas (or not serial commas)
Running DocAlyse will give you an estimate of the number of lists that have a serial comma and the number that have

no serial comma. However, it is only an estimate because what actually constitutes a list is difficult for a computer to

accurately judge, so suppose you end up with (as I did on my last job):

serial comma 7

no serial comma 9

I needed a more accurate count, so I wrote this macro. To use it, first run CopyTextSimple to create a nice clean

version of the text – after all, it’s only the words that you are assessing, not the formatting (better still, especially for

large files, use CopyTextVerySimple).

Then, when you run the macro, it identifies strings of words and commas that might be lists. While it is doing so, it

reports how many look serial-like or and how many do not, but note that this may well be a less accurate count than

DocAlyse produces.

The macro then gives you the option to decide which of these really are lists by checking the context. (To do this more

easily, open the window quite wide, and place the top LH corner of the window up in the top corner of the screen.

This makes sure that the prompt windows that the macro throws up do not obscure the text you’re trying to assess.)

As you go through, saying yes or no to the question “Is this really a list?”, it will tot up the numbers of serial/not serial

lists, so you can carry on doing this until you feel you’ve got a good enough assessment.

You click Cancel instead of saying yes or no, and this will drop you out of the macro. But then if you restart the macro

it will take up from where you left off, giving you the current count, up to that point, and you can check some more

potential lists. You will see that it has coloured the lists green or yellow for serial or not serial, respectively

In the example of the file that prompted me to write this macro, the initial count by the macro gave:

serial comma 9

no serial comma 25

and then when I had gone through and checked all the potential lists I got:

serial comma 9

no serial comma 17

So, compared with the 7/9 estimate that DocAlyse gave me, I really had got a clearer answer to my question.

(In fact, I didn’t write this macro until after I had sent the file back to the author, because it was urgent. Fortunately,

based on DocAlyse’s 7/9 count, I chose no serial comma!)

Sub SerialCommaCounter()

http://wordmacrotools.com/macros/S/SerialCommaHighlight
http://wordmacrotools.com/macros/S/SerialNotCommaHighlight
http://wordmacrotools.com/macros/S/SerialCommaCounter

Highlight duplicate sentences
This macro looks at every sentence in the current document and checks that this same sentence doesn’t occur

anywhere else in the document. If it finds duplicates, it highlights them both, the first in grey, the second in yellow.

It ignores sentences shorter than 10 words, so as not to pick up duplicate headings – but you can adjust that to taste.

Sub HighlightDuplicateSentences()

It’s pretty slow, so I’ve tried another technique that’s faster, but it has some limitations. Do give the two of them a go,

and see how you get on and report back to me if you think one or other is better.

Sub HighlightDuplicateSentences2()

Check and correct the hierarchy of brackets/braces/parentheses
The aim of this macro is to check and, if necessary correct, hierarchical enclosures – {, [and (– using whatever order

your client wants.

The macro starts from the current cursor position and works its way down through the text, correcting the order of the

enclosures used. However, if there is a section of text where the number of open enclosures is more than three, or if

the number of close enclosures is too few or too many, it stops, highlighting the region in which it thinks there’s an

error.

You can then correct the mistake and start up the macro again from that point onwards.

If there are areas of text (such as quotations or references lists) that you don’t want changing then, as with many of my

macros, you can apply the strikethrough attribute, in which case the macro ignores that section of text.

The actual hierarchy used is set at the beginning of the macro with lines such as:

'myOrder = "{([])}"

'myOrder = "([{}])"

myOrder = "{([])}"

so just add or delete the ‘comment’ apostrophes, according to taste.

The macro will work with track changes switched ON, but be very careful because track changes can easily cause

problems.

The most important principle for using it with track changes is: only run the macro once on any given section of text.

The reason is that once some of the enclosures have been edited, the F&Rs that the macro uses will ‘see’ all the

enclosures – the originals, and the replacement ones – so it can’t work out what’s what.

So this is my suggested procedure with track changes.

1) Move the cursor to the top of the document and run the macro. When it finds a set of enclosures that don’t match, it

stops and highlights the area within which the error lies.

2) Correct the number and hierarchy of enclosures yourself (with track changes still ON).

3) Move the cursor immediately past that set of enclosures and run the macro again.

Sub EnclosureFixer()

Remove all formatting except URLs
Someone wanted a clean, text-only version of a Word file, but with the URLs still blue and underlined.

http://wordmacrotools.com/macros/H/HighlightDuplicateSentences
http://wordmacrotools.com/macros/H/HighlightDuplicateSentences2
http://wordmacrotools.com/macros/E/EnclosureFixer

Sub FormatRemoveNotURLs()

Apply global highlighting with track changes
If you want to apply a highlight to a specific word/phrase in a document, but want the highlighting tracked, you can’t

do it with global F&R. Even if track change is on, global F&R will not track the highlighting. So you have to use a

trick.

Use a dummy attribute that is not used anywhere else in the document, and apply that to the word/phrase(s) using

FRedit. Then run this macro, which uses the find-and-do technique to find each of these attributes, switch track

changes off and remove the attribute.

I’ve set it up so that you can choose to use any (or all) of three different attributes to give three different colours of

highlighting. So at the start of the macro you have, for example:

myAllCaps = wdYellow

mySmallCaps = wdBrightGreen

myUnderline = wdNoHighlight

which means that any text in allcaps will go back to not-allcaps and be highlighted in yellow, any text in smallcaps

will go back to not-smallcaps and be highlighted in bright green; however, any text that is underlined will be left

untouched. (The ‘wdNoHighlight’ just gives the value zero, so you could equally well use: myUnderline = 0.)

So a sample FRedit list for this would be:

| ‘and’, using allcaps

AND|^&

| ‘you’, using smallcaps

YOU|^&

DoMacro|HighlightWithTrackChange

I realise that allcaps and smallcaps can be a bit confusing in the FRedit list, and so I’ve provided the option to use

underlining, though I realise it’s often us for URLs such as: www.archivepub.co.uk.

Sub HighlightWithTrackChange()

Apply highlights and/or colours to ‘confusables’
(Video: https://youtu.be/GPa1ItHFfCc)

This macro was generated to assist someone who wanted to draw attention to homophones and homonyms within a

text, to provide a prompt to check that the word was indeed the right one. However, the macro is ‘content free’, i.e.

you can use it for whatever words/phrases you want.

Simply create a list of the words/phrases and colour or highlight them according to taste. For example:

assent

ascent

horde

hoard

premier

premiere

http://wordmacrotools.com/macros/F/FormatRemoveNotURLs
file:///C:/Users/Paul/AppData/Roaming/Microsoft/Word/www.archivepub.co.uk
http://wordmacrotools.com/macros/H/HighlightWithTrackChange

N.B. If any of the words in the list are both uncoloured and have no highlight, the macro will do what you ask – apply

no colour and no highlight to those words! Just saying. :-)

Now save this file with the name ‘Confusables’ in a folder of your choice, and then add the full address of that file

into the macro:

myFile = "C:\Documents and Settings\Paul\My Documents\Confusables.docx"

To avoid highlighting words within words, at the beginning of the macro it says:

onlyColourWholeWords = True

However, if you have some reason to want to use this for part-words, simply change it to False.

Sub Confusables()

Correct accidental double capitals
HEre’s a macro to correct a very common typing error. It looks for occurrences of a double initial capital and corrects

them to a single initial capital.

You can highlight and/or font-colour the changes according to the settings at the beginning of the macro.

Sub CapitaliseUndoubler()

Correct spaces and punctuation on superscripted numbers
Suppose you have references or footnotes callouts that aren’t linked fields but rather are just pure text, superscripted

numbers, like this 23. So if, as in this example, there is a rogue space in front of the number and/or the punctuation

comes after the number, rather than before, then this macro corrects them, right through the document.

Sub SupercriptNumberFormatter()

http://wordmacrotools.com/macros/C/Confusables
http://wordmacrotools.com/macros/C/CapitaliseUndoubler
http://wordmacrotools.com/macros/S/SupercriptNumberFormatter

