
1

Appendix 13 – Word Macro Techniques
(Version 11.11.22)

Why this appendix?

When I reached the age of 72, and knowing that no-one can live forever, I’ve thought about how best to pass on what I

have learned during the previous 14 years of creating macros for editors. The macros themselves will still be here

when I’m gone, but I’m aware that the repertoire of techniques I have in my brain will disappear unless I commit them

to (electronic) paper.

What follows is a fairly random selection of ideas, sorry. It’s quite difficult to systematise it because many of the

techniques are linked, but this is definitely a work in progress. Indeed, as soon as I started to explain some of my

ideas, I began to question them and also to wonder if it was possible to do various things differently, and realised that

they might prove useful in future macros, so that has meant that progress is quite slow.

If there are items in comment bubbles, then that’s an indication that it’s a bit that I’m at work on – a sort of ‘Men at

work’ signboard. So please feel free to direct comments and/or questions about those bits – indeed, about any of the

text below.

I hope that at least some of it proves useful to you.

Resources

Bibliography

1) (Definitely) Macro Cookbook, Jack Lyon (2012 – ISBN: 978-1-4341-0332-1)

2) (Probably) An introduction to macro programming Paul Beverley See: Appendix 13 – Word Macro Techniques

3) (Possibly) Word 2007 Macros & VBA Made Easy, Guy Hart-Davis (2009 – ISBN: 978-0-07-161479-5)

4) (Reference) Writing Word Macros, Steven Roman (1999 – ISBN: 1-56592-725-7)

5) (Possibly) Microsoft Word VBA Guidebook, Allen Wyatt (2013 – ISBN: 978-1-61359-197-0)

Four videos that might help:
Programming Word macros 1 (23:23)

An intro to the idea of programming Word macros

https://youtu.be/bivzgSTfbbk

Programming Word macros 2 (15:49)

Stepping through macros, watching what they do

https://youtu.be/igckZJ0euHk

Programming Word macros 3 (28:11)

Genesis of a macro – Part I

https://youtu.be/iGgBka7H-1w

Programming Word macros 4 (22:11)

Genesis of a macro – Part II

https://youtu.be/NWnmoRRUAKQ

...plus those videos mentioned in the sections below.

2

Useful code snippets

First the treasure trove of code snippets that I have built up and often dip into when programming. It’s set up as a

‘macro’ because I store it within VBA at the top of the code area of the Normal.NewMacros.

Sub CommonCode()

' Stop the screen update

myScreenOff = True

If myScreenOff = True Then

 Application.ScreenUpdating = False

 On Error GoTo ReportIt

End If

Application.ScreenUpdating = False

On Error GoTo ReportIt

Application.ScreenUpdating = True

Exit Sub

' Switch the screen back on if there's an error

ReportIt:

Application.ScreenUpdating = True

On Error GoTo 0

Resume

' Create a range, rounding off the selection to whole words

' - or select the whole paragraph, if nothing was selected

If Selection.Start = Selection.End Then

 Set rng = Selection.Range.Duplicate

 rng.Expand wdParagraph

Else

 Set rng = Selection.Range.Duplicate

 rng.Collapse wdCollapseEnd

 rng.Expand wdWord

 Do While InStr(ChrW(8217) & "' ", Right(rng.Text, 1)) > 0

 rng.MoveEnd , -1

 DoEvents

 Loop

 Selection.Collapse wdCollapseStart

 Selection.Expand wdWord

 Selection.Collapse wdCollapseStart

 rng.Start = Selection.Start

 rng.Select

End If

' Create a new document, copying the old

Set rngOld = ActiveDocument.Content

Documents.Add

Set rng = ActiveDocument.Content

rng.FormattedText = rngOld.FormattedText

' Or for pure text, use:

' rng.Text = rngOld.Text

' Set up a range numerically

3

Set rng = ActiveDocument.Range(Start:=0, End:=10)

' Bog-standard F&R using a range

Set rng = ActiveDocument.Content

With rng.Find

 .ClearFormatting

 .Replacement.ClearFormatting

 .Text = "^13{2,}"

 .Wrap = wdFindContinue

 .Forward = True

 .Replacement.Text = "^p"

 .MatchWildcards = True

 .Execute Replace:=wdReplaceAll

 DoEvents

End With

' Turn off "smart" (ha!) cut and paste

mySmart = Options.SmartCutPaste

Options.SmartCutPaste = False

' turn it back on if the user wants it

Options.SmartCutPaste = mySmart

' Dummy Select Case command

Select Case nowChar

 Case 13: Selection.TypeText "-"

 Case 32: Selection.TypeText "elephant"

 Case Else: Selection.TypeText myDash1

End Select

' Standard response from user

myResponse = MsgBox("Scan the whole document?!", _

 vbQuestion + vbYesNo, "SerialCommaAlyse")

If myResponse <> vbYes Then Exit Sub

' Input a number from the user

Do

 myText = InputBox("1: Copy this macro" & vbCr & _

 "2: Restore keystroke", "MacroUpdater")

 myNumber = Val(myText)

 If myNumber = 0 Then Beep: Exit Sub

Loop Until myNumber = 1 Or myNumber = 2

' Set up a range to the end of the document

Set rng = ActiveDocument.Range(Selection.End, ActiveDocument.Content.End)

'Extend selection to nearest para

 Set rng = Selection.Range.Duplicate

 rng.Collapse wdCollapseStart

 rng.Expand wdParagraph

 Selection.End = rng.End

' Prepare to use speech

Set speech = New SpVoice

' When you need to say something, use

speech.Speak myWords, SVSFPurgeBeforeSpeak

' Set whether to track or not

4

doTrack = True

' Remember whether tracking was on

myTrack = ActiveDocument.TrackRevisions

' Switch tracking off if it's not wanted

If doTrack = False Then ActiveDocument.TrackRevisions = False

' Put tracking back on, if it was on before

ActiveDocument.TrackRevisions = myTrack

' Reduce ange/selection to beginning/end

rng.Collapse wdCollapseEnd

Selection.Collapse wdCollapseStart

Selection.Expand wdFieldLink

Selection.Expand wdParagraph

Selection.Expand wdTable

Selection.Expand wdSentence

Selection.Expand wdWord

' Other useful commands

Documents.Open fileName:=myFullName

Selection.Range.Case = wdLowerCase

' Set up for neat, easy newlines

CR = vbCr

CR2 = CR & CR

' then

Selection.TypeText Text:=myParaText & CR2

' How long did it take?

myT = Timer

' Do whatever

myT2 = Timer

Debug.Print myT2 - myT

'Select just the word

Selection.MoveEndWhile cset:=ChrW(8217) & " '", count:=wdBackward

 Loop

' Current page number?

pageNum = rng.Information(wdActiveEndAdjustedPageNumber)

inAtable = rng.Information(wdWithInTable)

' Delete the currently active document and don't ask the user

' Be careful what you wish for!

ActiveDocument.Close SaveChanges:=False

' Create a double beep

Beep

myTime = Timer

Do

Loop Until Timer > myTime + 0.2

Beep

' Run another macro from this one

5

Application.Run macroName:="AcceptchangesSelected"

' or just

Call AcceptchangesSelected

' Undo the previous editing action

WordBasic.EditUndo

' Choose the colour that F&R searches, then restore the colour

myColour = wdYellow

oldColour = Options.DefaultHighlightColorIndex

Options.DefaultHighlightColorIndex = myColour

' Do F&R

Options.DefaultHighlightColorIndex = oldColour

' Let the user choose various words/phrases

wds = "cows,pigs,fish"

' Now tidy it up

' Force comma at start; no comma at end

wds = "," & wds & ","

wds = Replace(wds, ",,", ",")

wds = Left(wds, Len(wds) - 1)

myWord = Split(wds, ",")

For i = 1 To UBound(myWord)

 Blah = myWord(i)

Next i

' What's the normal font in this file?

nmlFont = ActiveDocument.Styles(wdStyleNormal).Font.Name
' current para number

paraNum = ActiveDocument.Range(0,

Selection.Paragraphs(1).Range.End).Paragraphs.count

' OR (more understandable)

Set rng = ActiveDocument.Range(0, Selection.End)

paraNum = rng.Paragraphs.count

' Do things in each para 1

For Each myPar In ActiveDocument.Paragraphs

 myText = myPar.Range.Text

Next myPar

' Do things in each para 2

For i = 1 To ActiveDocument.Paragraphs.Count

 myText = ActiveDocument.Paragraphs(i).Range.Text

Next i

' Note how some entities (like .Paragraphs) need to

' be followed by .Range, while others don’t!?

For Each myTable In ActiveDocument.Tables

 For Each myCell In myTable.Range.Cells

 myText = myCell.Range

...

6

 Next myCell

Next myTable

For Each rv In sourceText.Revisions

 Set rng = rv.Range.Duplicate

...

Next rv

For Each wd In rng.Words

 If wd.Font.Shadow = True Then wd.Case = wdUpperCase

Next

For Each ch In rng.Characters

 If ch.Text = "Blah" Then

 ch.Select

...

 End If

Next ch

For Each sn In ActiveDocument.Sentences

 sn.Select

 If Len(sn) > 5 Then

...

 End If

Next sn

' SAVE OLD VALUES

oldFind = Selection.Find.Text

oldReplace = Selection.Find.Replacement.Text

' Work on all tables or only selected ones.

If Selection.Start = Selection.End Then

 Set workRange = ActiveDocument.Tables

 doTheLot = True

Else

 Set workRange = Selection.Tables

End If

With workRange.Find

' etc

 .Text = oldFind

 .Forward = True

 .Replacement.Text = oldReplace

 .Wrap = wdFindContinue

End With

' Get rid of weird colouring

Selection.Shading.Texture = wdTextureNone

Selection.Shading.ForegroundPatternColor = wdColorAutomatic

Selection.Shading.BackgroundPatternColor = wdColorAutomatic

' Selection.Information is a powerful command

hPosition = Selection.Information(wdHorizontalPositionRelativeToPage)

Dim ss(2) As String

7

ss(0) = "orange"

ss(1) = "apple"

ss(2) = "banana"

WordBasic.SortArray ss()

' To sort up or down

If sortReversed Then

 WordBasic.SortArray ss(), 1

Else

 WordBasic.SortArray ss(), 0

End If

' Check all characters in a text

For i = 1 To Len(myText)

 thisChar = Asc(Mid(myText, i, 1))

Next

' Check through all the open documents

For Each myDoc In Documents

 myName = myDoc.Name

 allFileNames = allFileNames & "|" & myName

If InStr(allFileNames, myName) = 0 Then

Else

 ' This file has the same name as anothe open file

 ' Maybe check full address and name of file

 myFullName = myDoc.FullName

End If

Next myDoc

On Error GoTo ReportIt

' Error reporting is complicated

On Error GoTo ReportIt

' At end of macro

Exit Sub

ReportIt:

If Err.Number = 5097 Then

 DoEvents

 ' Do something

 Resume Next

Else

 On Error GoTo 0

 DoEvents

 Resume

End If

'End Sub

' Or use

' On Error Resume Next

' End Sub

End Sub

8

From here on, it’s a relatively random set of explanations of bits of code for various purposes.

Changing things within specific paragraphs, sentences and words

(Videos: https://youtu.be/uwLmKZr07ws)

In my video, I go through examples of making changes to the content of paragraphs, sentences and words. The

technique is for when you want to do “something” to certain elements of every paragraph (or sentence or word) in the

whole document (or a selection thereof.)

These are the macros I used in the video:

Sub DIYFormatHeadwords()

Sub DIYColourLongSentences()

Sub DIYColourLongWords()

However, you might want to add this at the start of your macros:

' Check if user wants to work on whole file of selection

If Selection.End = Selection.Start Then

 myResponse = MsgBox("Do this to the WHOLE file?", _

 vbQuestion + vbYesNo)

 If myResponse = vbNo Then Exit Sub

 Set rng = ActiveDocument.Content

Else

 Set rng = Selection.Range.Duplicate

End If

In other words, if an area of text is selected, the macro will go ahead and make the changes, just to that area. However,

if no text is selected, this code will alert you and ask if you really want to make the changes throughout the whole

document.

‘Find and do’

This is a very powerful concept: Look through a range (be that set by selection, or the whole of the main text, or notes)

and DO SOMETHING. Do what? well, anything that you can’t do by a simple straightforward find and replace.

Sub FindAndDoRng()

' Paul Beverley - Version 08.08.22

' Finds something specific and does things to each one

Set rng = ActiveDocument.Content

' Or see below for selecting different ranges.

With rng.Find

 .ClearFormatting

 .Replacement.ClearFormatting

 .Text = "o"

 .Wrap = wdFindStop

 .Replacement.Text = ""

 .Forward = True

 .MatchWildcards = False

Commented [XXX1]: Set up the text you want to find, and

maybe put some conditikons on the range, such as wildcard, or

highlight, or whatever.

http://wordmacrotools.com/macros/D/DIYFormatHeadwords
http://wordmacrotools.com/macros/D/DIYColourLongSentences
http://wordmacrotools.com/macros/D/DIYColourLongWords

9

 .MatchWholeWord = False

 .Execute

End With

myCount = 0

Do While rng.Find.Found = True

' If you want to count them...

 myCount = myCount + 1

' Note where the end of the found item is

 Set rngWas = rng.Duplicate

' make sure you're past

 rngWas.MoveEnd , 1

 rngWas.Collapse wdCollapseEnd

' rng.Select

 If myCount Mod 20 = 0 Then rng.Select

 rng.Text = "ooo"

 rng.Font.Italic = True

 ' Restart searching AFTER the previous occurrence

 rng.End = rngWas.End

 rng.Collapse wdCollapseEnd

' Go and find the next occurrence (if there is one)

 rng.Find.Execute

 DoEvents

Loop

MsgBox "Changed: " & myCount

End Sub

The code that follows is a Selection version of the above, but I always use a range, especially because with all the

BLOAT that Microsoft has added into Word, it struggles to display the changes made by your speedy macro.

Worse still, after the macro has “finished”, i.e. it has reached End Sub, Word may still be desperately trying to display

all the changes the macro has made...

...And you know what happens if the users says, “The macro has bleeped to say it has finished, but if I click the

screen, I can’t move the cursor!” Click, click, click... CRASH!

Sub FindAndDo()

' Paul Beverley - Version 15.07.17

' Finds something specific and does things to each one

With Selection.Find

 .ClearFormatting

 .Replacement.ClearFormatting

 .Text = "<for>"

 .Wrap = wdFindStop

 .Replacement.Text = ""

 .Forward = True

 .MatchWildcards = True

 .MatchWholeWord = False

 .MatchSoundsLike = False

 .Execute

End With

myCount = 0

Commented [XXX2]: Go and find the first one.

Commented [XXX3]: Go around this loop, doing what it says,

unless and until the find fails.

Commented [XXX4]: Useful while debugging your code, to see

exactly what the find found.

Commented [XXX5]: Or may show the user, every so often,

where the macro has got to.

Commented [XXX6]: This is the bit where you DO the

SOMETHING that you wanted to do with each bit of found text. And

this can have conditionals: If blah blah is true then change it,
otherwise change it differently or not at all.

Commented [XXX7]: Restart the search from after the previous

find.

10

Do While Selection.Find.Found = True

' If you want to count them...

 myCount = myCount + 1

' Note where the end of the found item is

 endNow = Selection.End

 Selection.Start = Selection.Start + 1

 Selection.End = Selection.Start + 1

 Selection.TypeText ChrW(8211)

 ' Be sure you're past the previous occurrence

 Selection.End = endNow

 Selection.Collapse wdCollapseEnd

' Go and find the next occurrence (if there is one)

 Selection.Find.Execute

Loop

MsgBox "Changed: " & myCount

End Sub

Choosing which bits of text to run your macro on

I give here two possibilities:

1) If the user selects some text, the macro works on the selected text, otherwise it works on (depending where the

cursor is) the main text, or the footnotes or the endnotes.

2) At the beginning of the macro you have a code, made up of T, E and F which specifies which of (a) text, (b)

endnotes and/or (c) footnotes the macro will work on.

Scheduling a string of F&Rs

The macro QuoteSingleToDoubleGlobal has some code that illustrate a few useful programming ideas.

The task is to use a string of (nine) F&Rs to:

a) use strike-through to mask off uses of apostrophes, such as ‘weren’t’, ‘he’d’, ‘I’ll’ etc

b) change all the remaining single quotes to double

c) remove the masking strike-through

If you use a string of individual F&Rs, you end up with quite a long macro is each is of the form:

Set rng = ActiveDocument.Content

With rng.Find

 .ClearFormatting

 .Replacement.ClearFormatting

 .Text = "’t"

 .Wrap = wdFindContinue

 .Forward = True

 .Replacement.Text = "^&"

 .Replacement.Font.StrikeThrough = True

 .MatchWildcards = False

 .Execute Replace:=wdReplaceAll

Commented [XXX8]: Needs writing!

11

 DoEvents

End With

So I set up the (nine) finds and their replaces as an array, but to make it simple of the programmer, I put the items of

arrays in two strings:

myFind = "',!t,!ve,!m,!s,!d,!r,!l,'"

myReplace = myReplace & "',^&,^&,^&,^&,^&,^&,^&,"""

(The first F&R is “'” into “'”, which makes sure any non-curly single quotes/apostrophes are made curly.)

Sub QuoteSingleToDoubleGlobal()

' Paul Beverley - Version 08.11.22

' Changes single quotes to double, avoiding apostrophes

myFind = "',!t,!ve,!m,!s,!d,!r,!l,'"

myFind = Replace(myFind, "!", ChrW(8217))

myReplace = myReplace & "',^&,^&,^&,^&,^&,^&,^&,"""

fnd = Split(myFind, ",")

rpl = Split(myReplace, ",")

Set rngT = ActiveDocument.Content

If ActiveDocument.Footnotes.count > 0 Then _

 Set rngF = ActiveDocument.StoryRanges(wdFootnotesStory)

If ActiveDocument.Endnotes.count > 0 Then _

 Set rngE = ActiveDocument.StoryRanges(wdEndnotesStory)

For i = 0 To UBound(fnd)

 Debug.Print fnd(i), rpl(i)

 With rngT.Find

 .ClearFormatting

 .Replacement.ClearFormatting

 .Text = fnd(i)

 If rpl(i) = """" Then .Font.StrikeThrough = False

 .Wrap = wdFindContinue

 .Replacement.Text = rpl(i)

 .MatchCase = False

 .MatchWildcards = False

 If rpl(i) = "^&" Then .Replacement.Font.StrikeThrough = True

 .Execute Replace:=wdReplaceAll

 End With

 DoEvents

 If ActiveDocument.Footnotes.count > 0 Then

 With rngF.Find

 .ClearFormatting

 .Replacement.ClearFormatting

 .Text = fnd(i)

 If rpl(i) = """" Then .Font.StrikeThrough = False

 .Wrap = wdFindContinue

 .Replacement.Text = rpl(i)

 .MatchCase = False

 .MatchWildcards = False

 If rpl(i) = "^&" Then .Replacement.Font.StrikeThrough = True

 .Execute Replace:=wdReplaceAll

 End With

12

 DoEvents

 End If

 If ActiveDocument.Endnotes.count > 0 Then

 With rngE.Find

 .ClearFormatting

 .Replacement.ClearFormatting

 .Text = fnd(i)

 If rpl(i) = """" Then .Font.StrikeThrough = False

 .Wrap = wdFindContinue

 .Replacement.Text = rpl(i)

 .MatchCase = False

 .MatchWildcards = False

 If rpl(i) = "^&" Then .Replacement.Font.StrikeThrough = True

 .Execute Replace:=wdReplaceAll

 End With

 DoEvents

 End If

Next i

rngT.Font.StrikeThrough = False

If ActiveDocument.Footnotes.count > 0 Then _

 rngF.Font.StrikeThrough = False

If ActiveDocument.Endnotes.count > 0 Then _

 rngE.Font.StrikeThrough = False

End Sub

ConsolidateAll has useful code

NumberRangeHyphenToDash is a good example of FindAndDoRng

Counting the occurrences of specific text

The ‘Find and do’ technique could be used as a way of counting the number of occurrences of something, but it would

be very slow. Instead, you can use a technique based on find and replace. which you use to find the item you want to

count and replace it by the same thing but with one extra character added. Here’s a sample of the code:

myText = "hello"

' Find current length of file

myTot = ActiveDocument.Range.End

' Do token F&R

Set rng = ActiveDocument.Content

With rng.Find

 .ClearFormatting

 .Replacement.ClearFormatting

 .Text = myText

 .Replacement.Text = "^&!"

 .MatchCase = True

 .MatchWildcards = False

 .Execute Replace:=wdReplaceAll

13

End With

DoEvents

myCount = ActiveDocument.Range.End - myTot

If myCount > 0 Then WordBasic.EditUndo

MsgBox myCount

You record the current length of the file, do the F&R (the "^&!" means “that which you found, plus one extra

character”), then find the increase in length of the file.

Finally, you undo the F&R, but only if the file is longer. If it found nothing, then it changed nothing, so the

WordBasic.EditUndo would throw up a ‘Nothing to undo’ error.

For years, that was the fastest counting algorithm I could find. There is now a faster algorithm, but it only works for

straightforward text counting. It can be used for both case-sensitive and non-case-insensitive counts, and it can be a

whole-word count, but it can’t be used for wildcard counting, such as that used in DocAlyse.

So, the faster technique is to text manipulation. You grab the whole of the text as a single string (yes, even if it’s a

400,000-word book!), use Len() to find its length, use Replace() to make the same sort of change as you do with

the F&R version, then find the new length of the string.

Here’s a simplistic version of the code:

myText = "hello"

allText = ActiveDocument.Range.Text

totChars = Len(allText)

myCount = Len(Replace(allText, myText, myText & "!")) - totChars

But beware! This will count text-in-text. In other words, if you want to count the number of times ‘etc’ occurs, don’t

try it on a text like this:

“Visit an art shop to fetch some etchings and sketches, etc: a bottle of ketchup, a clump of vetch, a technical drawing

of a valve and petcock next to a wetcell, a kingbird or petchary, an arrow from a fletchery, a Vietcong drinking a

dietcoke or Sir Charles Sketchley receiving his baronetcy, etc. It’ll make you feel tetchy and wretched, and you might

even retch!”

The answer would not be 2, as you might expect, but 17!

So you need to ‘prepare’ your all-the-text string so that every single word has a space either side of it, and then in the

final two lines, you can do the count – very quickly!

myText = "hello"

allText = " " & ActiveDocument.Content.Text & " "

' Prepare to change all punctuation to " "

' plus all "^p" to "^p " and all "^t" to "^t "

chs = " , . ! : ; [] { } () / \ + "

' The variable ‘chs’ will hold all the Replace()

' items you want to make to the all-the-text string

chs = chs & ChrW(8220) & " "

chs = chs & ChrW(8221) & " "

chs = chs & ChrW(8201) & " "

chs = chs & ChrW(8222) & " "

chs = chs & ChrW(8217) & " "

chs = chs & ChrW(8216) & " "

chs = chs & ChrW(8212) & " "

chs = chs & ChrW(8722) & " "

14

chs = chs & vbCr & " "

chs = chs & vbTab & " "

' To force space at start; no space at end

' i.e. one space for each character that

' needs changing to a space

chs = " " & chs & " "

chs = Replace(chs, " ", " ")

chs = Replace(chs, " ", " ")

' Make all the replaces on the all-the-text string

chars = Split(chs, " ")

For i = 1 To UBound(chars)

 allText = Replace(allText, chars(i), " ")

Next i

' At last, we're ready to do the counting

totChars = Len(allText)

schText = " " & myText & " "

myCount = Len(Replace(allText, schText, schText & "!")) - totChars

Of course, the preparation work in the first stage of this code takes time, but the final two lines of code do the actual

counting, so you can use these final two lines to count any and every word/phrase that you want to – on a ‘whole-

word’ basis.

Manipulating the screen

If the selection point is not currently on screen, the following command brings the selection point to about 1/4 or 1/3

the way down the visible window.

ActiveWindow.ScrollIntoView Selection.range

Actually, I sometimes find it more helpful to bring the selection point right to the very top of the screen, so that I can

easily find it (especially if the text size is small on screen), so I use my macro, JumpScroll:

Sub FindAndDoRng()

' Paul Beverley - Version 08.08.22

' Finds something specific and does things to each one

Set rng = ActiveDocument.Content

With rng.Find

 .ClearFormatting

 .Replacement.ClearFormatting

 .Text = "<for>"

 .Wrap = wdFindStop

 .Replacement.Text = ""

 .Forward = True

 .MatchWildcards = True

 .MatchWholeWord = False

 .Execute

End With

myCount = 0

Do While rng.Find.Found = True

' If you want to count them...

Commented [XXX9]: Find “something”

15

 myCount = myCount + 1

' Note where the end of the found item is

 Set rngWas = rng.Duplicate

' make sure you're past

 rngWas.MoveEnd , 1

 rngWas.Collapse wdCollapseEnd

' rng.Select

 If myCount Mod 20 = 0 Then rng.Select

 rng.Font.Italic = True

 ' Restart searching AFTER the previous occurrence

 rng.End = rngWas.End

 rng.Collapse wdCollapseEnd

' Go and find the next occurrence (if there is one)

 rng.Find.Execute

 DoEvents

Loop

MsgBox "Changed: " & myCount

End Sub

If you really feel uneasy handling ranges, you can do the same thing with Selection. While it might be easier to

develop, it’s likely to be slower in executtion, especially as Word’s ‘feature bloat’ increases.

Here’s the macro:

Sub FindAndDo()

' Paul Beverley - Version 08.08.22

' Finds something specific and does things to each one

With Selection.Find

 .ClearFormatting

 .Replacement.ClearFormatting

 .Text = "e"

 .Wrap = wdFindStop

 .Replacement.Text = ""

 .Forward = True

 .MatchWildcards = True

 .MatchWholeWord = False

 .MatchSoundsLike = False

 .Execute

End With

myCount = 0

Do While Selection.Find.Found = True

' If you want to count them...

 myCount = myCount + 1

' Note where the end of the found item is

 Set rng = Selection.Range.Duplicate

' and make sure you're past it

 rng.MoveEnd , 1

 rng.Collapse wdCollapseEnd

' Do something with the thing you found

 Selection.Font.Italic = True

' Restart search from after the previous occurrence

Commented [XXX10]: During development use this, so you can
see what it’s found each time.

Commented [XXX11]: Every so often, select the range so as to
show progress. ‘Mod 10’ means display the text every 10 finds.

Adjust to taste!

Commented [XXX12]: Here’s where you do something with that

which you have found.

16

 rng.Select

' Go and find the next occurrence (if there is one)

 Selection.Find.Execute

 DoEvents

Loop

MsgBox "Changed: " & myCount

End Sub


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                            
 

The LargeScroll moves the selection point off screen, you reassert the selection point and a SmallScroll brings it to the 

top of the screen. 

 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                            


If you’re changing the selection point a lot, while the user doesn’t need to see what’s happening, you can save

execution time by not allowing the screen to be updated.

Application.ScreenUpdating = False/True

But beware that if the macro crashes, for some reason, while screen updating is off, you’re in trouble! So you might

want to add some error handling (q.v.), to switch screen-updating back on in the event of an error.


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                            

 

You can change the size of the screen, but it fails if the window is either maximised or minimise, so normalise it first. 

 
ActiveDocument.ActiveWindow.WindowState = wdWindowStateNormal 

Application.Resize Width:=myWidth, Height:=myHeight 

 

(Beware that some Macs don’t support Application.Resize. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                            


But you can also find out what screen size is available and then change the size of your window...

1) To open a new file in the middle of the screen, at a specific distance from the edge of the screen (doesn’t work on

some Macs):

Sub OpenInMiddleScreen()

' User opens the chosen file

Dialogs(wdDialogFileOpen).Show

' Check how much screen area is available

scnHeight = Application.UsableHeight

scnWidth = Application.UsableWidth

' Do some calculations to decide on the window size,

' to leave a margin all the way around

mySideMargin = 100

myTopMargin = 50

Application.Move Left:=mySideMargin, Top:=myTopMargin

wdth = scnWidth - 2 * mySideMargin

17

ht = scnHeight - 2 * myTopMargin

' Resize the window

Application.Resize Width:=wdth, Height:=ht
End Sub

2) (Again, not on some Macs...) Open each new file with same size window as the current file, but further down and to

the right. For this, you need to read the parameters of the current window and then open the new file.

Sub OpenDownAndRight()

myJump = 50

' Read the existing window parameters

nowWdth = Application.Width

nowHt = Application.Height

nowLeft = Application.Left

nowTop = Application.Top

' User opens the new file

Dialogs(wdDialogFileOpen).Show

newLeft = nowLeft + myJump

newTop = nowTop + myJump

' Set window's top left position

Application.Move Left:=newLeft, Top:=newTop

' How much space is available

scnHeight = Application.UsableHeight

scnWidth = Application.UsableWidth

' Do calculations to see if the window will go off screen...

wdth = nowWdth

rtMargin = scnWidth - newLeft - wdth

' and if so choose a better parameter for width

If rtMargin < 0 Then wdth = wdth + rtMargin

ht = nowHt

btmMargin = scnHeight - newTop - ht

' ... if so choose a better parameter for height

If btmMargin < 0 Then ht = ht + btmMargin

Application.Resize Width:=wdth, Height:=ht

End Sub

Counting the occurences of specific text

18

Dealing with track changes

When you want to do something without track changes, first see what the current state of TC is, then make the

changes, then restore TC to as it was. Also, by using doTrack = True/False, you can set whether or not to do

the changes with TC off:

doTrack = False ' Or True

revsView = ActiveWindow.View.RevisionsView

myTrack = ActiveDocument.TrackRevisions

If doTrack = False Then ActiveDocument.TrackRevisions = False

' Make the changes

Blah blah blah

' Restore TC

ActiveDocument.TrackRevisions = myTrack

ActiveWindow.View.RevisionsView = revsView

Select the whole of something

Selection.Expand wdParagraph

Selection.Expand wdTable

Selection.Expand wdSentence

Selection.Expand wdWord

But MS Word’s idea of what constitutes a ‘word’ includes the apostrophe and the following space. In this sentence,

I’ve highlighted some of the items that consitute a ‘word’:

But MS Word’s idea of what constitutes a ‘word’ includes the apostrophe and the following space. In

this sentence, I’ve highlighted some of the ‘word’s.

The idea is that a ‘word’ is everything up to, but not including, the start of the next word (I deliberately put two spaces

before ‘includes’), and it includes the punctuation.

And the following sentence has eight ‘word’s, not five:

Remember “double quotes” are included.

But if you just need the text of the word itself, then to avoid the following space(s) and/or the closing single quote,

you could, in theory, use:

Selection.MoveEndWhile cset:=ChrW(8217) & " '", Count:=wdBackward

But don’t!!!

I used this for years until I found that it was the culprit behind the enexplained crashes I was getting when I was using

a macro in the region of a comment. Instead, use:

Do While InStr(ChrW(8217) & "' ", Right(Selection.Text, 1)) > 0

 Selection.MoveEnd , -1

 DoEvents

Loop

19

The DoEvents is added because if this bug in VBA does rear its ugly head, at least you’ll be able to exit the macro

cleanly, without actually crashing Word.

(If you’re interested, the Cset command above means: move the selection backwards, past any collection of characters

that include, space, straight apostrophe and curly close quote, i.e. curly apostrophe = Chrw(8217).

If you’re using a range, rather than a selection:

rng.Expand wdWord

Then use:

Do While InStr(ChrW(8217) & "' ", Right(rng.Text, 1)) > 0

 rng.MoveEnd , -1

 DoEvents

Loop

Other things you can select

We showed above that you can select a paragraph, table, word or sentence with

Selection.Expand

And you can do the same for a range:

rng.Expand wdParagraph

rng.Expand wdTable

rng.Expand wdSentence

rng.Expand wdWord

There are other things you can select, but only by using selection. So these commands allow you to define a range –

for the currently active selection – giving the section, page, line, paragraph, table or table cell that the start of the

selection is in. It does so without changing the selection, which can be quite useful.

You use:

set rng = ActiveDocument.Bookmarks("\Section").Range

set rng = ActiveDocument.Bookmarks("\Page").Range

set rng = ActiveDocument.Bookmarks("\Line").Range

set rng = ActiveDocument.Bookmarks("\Para").Range

set rng = ActiveDocument.Bookmarks("\Table").Range

set rng = ActiveDocument.Bookmarks("\Cell").Range

But if all you want to do is, say, select the whole of the current page, then it’s

ActiveDocument.Bookmarks("\Page").Range.Select

Where am I?

Here are a few ideas about how to find where the cursor (Selection) or range has ended up.

Which page and line number is the cursor currently in?

pageNum = rng.Information(wdActiveEndAdjustedPageNumber)

20

lineNum = rng.Information(wdFirstCharacterLineNumber)

There are ways to find out where the

Is the cursor currently in a table? Yes or no.

inAtable = rng.Information(wdWithInTable)

Which paragraph (table) is the cursor currently in?

Set rng = ActiveDocument.range(0, Selection.End)

paraNum = rng.Paragraphs.Count

Set rng = ActiveDocument.range(0, Selection.End)

tableNum = rng.Tables.Count

(The latter code pair only tells you, if you aren’t actually in a table, how many tables there above the cursor.)

One use of this is if you want to do something “from the current table onwards”. Here’s an example, which steps

through the tables, one by one, and you can stop the macro if you get to one you want to edit. Then you just re-run the

macro and carry on.

The there’s information on which column/row the cursor is in:

 myColNum = rng.Information(wdStartOfRangeColumnNumber)

 myRowNum = rng.Information(wdStartOfRangeRowNumber)

I’m not sure what this is for. Have a play and let me know! :-)
MsgBox Selection.Information(wdHorizontalPositionRelativeToPage)

(List of .Information items is shown at the end of the file.)

Sub StepThroughTables()

' Version 21.11.18

' Steps through tables, one by one

Set rng = ActiveDocument.range(0, Selection.End)

tableNum = rng.Tables.Count

totTables = ActiveDocument.Tables.Count

For i = tableNum + 1 To totTables

 ActiveDocument.Tables(i).Select

 Selection.Collapse wdCollapseStart

 Set rng = Selection.range.Duplicate

 ActiveDocument.ActiveWindow.LargeScroll down:=1

 ActiveDocument.ActiveWindow.SmallScroll down:=1

 Selection.MoveUp wdParagraph, 1

 rng.Select

 Selection.MoveEnd wdWord, 1

 myResponse = MsgBox("Continue?", vbQuestion + vbYesNoCancel)

 If myResponse <> vbYes Then Exit Sub

Next i

Beep

End Sub

21

Problems during long-running macros

When you want to stop a macro running (“I didn’t mean to run this particular macro!” or “This macro is taking too

long!”), the theory is that you should be able to hold down the Ctrl key and press the Break key (unless you have a

laptop that doesn’t possess a Break key, as I have!) and the macro should stop.

However, when a macro is running that’s very intensive, Word can get itself in a twist, and may totally ignore the

Break key.

Worse still, if the user clicks on the screen, wondering if the macro has died, Word may well crash! I do try to warn

people: “When a macro is running, DON’T CLICK THE SCREEN!” but it’s an instinctive reaction when you’re

wondering what’s going on. I know, I do it myself!

So, if you’re going to run an intensive macro, and you fear that it might be long and tedious, open the Visual Basic

first (use Alt-F11 – or if you then get a grey-only screen, go back to the Word file and use Alt-F8 and click Edit).

Then move the VBA window so that you can see the top edge of this window. Why? (a) on that top line will be

something like:

Microsoft Visual Basic for Applications - Chapter 04_PB - [NewMacros (Code)]

where “Chapter 04_PB” is the name of the file where the cursor is currently placed. Then when you run the macro, it

changes to:

Microsoft Visual Basic for Applications - Chapter 04_PB [Running] - [NewMacros (Code)]

so you can see whether the macro is still running. If you want to stop the macro running, you can click the Reset (■)

icon (like a DVD Stop icon) on the ribbon. In fact, you can click the Pause (║) icon, which will take you into Debug

mode, so that you can see where the macro has got to and then, if you decide it’s OK and want to continue, click the

Run (►) icon, or press F5.

What’s more, if the macro uses different files then the title line tells you which file currently has the input focus, i.e.

the cursor or the current Selection).

However, this way of halting a macro isn’t 100% reliable. The VBA window itself does sometimes freeze – then you

just have to crash Word and restart it. (You did remember to save the working file before running the macro, didn’t

you?!)

So it’s worthwhile (I’d almost say essential) putting some DoEvent commands into the program at critical (busy)

stages of its operation. This command doesn’t actually do anything specific, but it seems to let the Word window

‘catch up with’ VBA, making it more likely that Ctrl-Break, or Reset (or Pause) will work, and you’ll be able to exit

cleanly from the macro.

Running other facilities from within a macro

You can run other macros from within a macro:

Application.Run MacroName:="AutoCurlyQuotesOFF"

Application.Run MacroName:="AutoListOff"

And you can run some of Word’s functions, though I haven’t found any rhyme or reason why some things work and

others don’t (answers on a postcard, please!). These two work:

Application.Run MacroName:="EditUndo"

Application.Run MacroName:="NextChangeOrComment"

but

22

Application.Run MacroName:="NavPaneSearch"

is a no-go, so for that, you have to use:

CommandBars("Navigation").Visible = True

However, if you use Application.Run MacroName:="EditReplace" then, after you’ve done your search,

the EditReplace macro will still be running, and so when you close the F&R window, Word generates an error. So you

have to instead use:

CommandBars("Menu Bar").Controls("Edit").Controls("Replace...").Execute

Either that, or you can add two error trapping lines:

On Error GoTo theEnd

Application.Run MacroName:="EditReplace"

theEnd:

End Sub

Also, you can sometimes use (for macros in the Normal template):

Call FRedit

Call AutoListOff


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                            

 

You can open the Comments pane with: 

 
ActiveDocument.ActiveWindow.View.SplitSpecial = wdPaneComments 

 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                            


Here are some examples of other things you can do with Commandbars. To change the width of the Navigation pane

and the Styles pane:

Application.CommandBars("Styles").Width = 200

Application.CommandBars("Navigation").Width = 200

The above is put to good use in this macro:

Sub NavPaneCustomize()

' Version 09.01.21

' Opens the navigation pane where and how you want

h = 600

w = 400

' doSetUp = True

doSetUp = False

If doSetUp = True Then

 w = Application.CommandBars("Navigation").Width

 h = Application.CommandBars("Navigation").Height

 MsgBox "H: " & h & vbCr & vbCr & "W: " & w

 Exit Sub

End If

If Application.CommandBars("Navigation").Visible = False Then

23

 Application.CommandBars("Navigation").Visible = True

 'Application.CommandBars("Navigation").Position = msoBarRight

 Application.CommandBars("Navigation").Position = msoBarLeft

 'Application.CommandBars("Navigation").Position = msoBarFloating

 'Application.CommandBars("Navigation").Height = h

 Application.CommandBars("Navigation").Width = w

Else

 Application.CommandBars("Navigation").Visible = False

End If

End Sub

File handling

To find the name of the current file:

fileName = ActiveDocument.Name

fullFileName = ActiveDocument.FullName

These will give you, respectively, just the name of the file: “Chapter 04_PB.docx” or the whole address as well:

“C:\MyFiles\WIP\MyCurrentBook\Chapter 04_PB.docx”

If you ask for the name of the current pane by using:

paneName = ActiveWindow.Caption

then you’ll probably get just the filename: “Chapter 04_PB” (without the ‘.docx’). However, if you’ve opened a

second window on that file, you’ll get “Chapter 04_PB:01” or “Chapter 04_PB:02”.

If you want to close the current pane, to go back to a single view, use:

ActiveWindow.ActivePane.Close

Handling multiple files

I’ve written a range of different multi-file macros, so here I explain the code used to capture the names of the files in a

folder, ready to “do something” with each of the files (or a sub-selection of those files).

 Check the number of documents currently open
docCount = Documents.Count

 Open the File Open dialogue box
Dialogs(wdDialogFileOpen).Show

 If the user has actually opened a document, then close it again
If Documents.Count > docCount Then ActiveDocument.Close

 Read the current directory
dirPath = CurDir()

 Point the filename reader, Dir(), to my directory
ChDir dirPath

 Use Dir() to read the name of the first file in this directory

 (you need the PathSeparator because it’s different

 on Macs from PCs)
myFile = Dir(CurDir() & Application.PathSeparator)

 Create a new file for the list
Documents.Add

numFiles = 0

24

 As long as Dir() has found a file...
Do While myFile <> ""

 and if it’s a Word-readable file (.doc, .docx or .rtf)...
 If InStr(LCase(myFile), ".doc") > 0 Or InStr(LCase(myFile), ".rtf") > 0 Then

 then enter its name into the list
 Selection.TypeText myFile & vbCr

 Count how many files there are
 numFiles = numFiles + 1

 End If

 Read the next file from the same directory
 myFile = Dir()

Loop

 Add the directory path at the top of the list
Selection.TypeText dirPath

 Read the directory name, but excluding the delimiter
Selection.MoveStartUntil cset:=":\", Count:=wdBackward

dirName = Selection

If you look in any of my multifile macros, you’ll see that I also sort the list of files into alphabetical order. That’s not

necessary for PCs, but on Macs, the Dir() command doesn’t pull up the files in alphabetical order for some reason.

Looking through the open windows/files

On the face of it, this is very straightforward. You can look through each of a set of open windows in order to find if

there is a particular file that the macro is looking for. However, it is one bit of code that has caused real headaches,

over the years.

Looking for the ‘zzFReditList’ file...

gottaDoc = False

For Each myWnd In Application.Windows

 thisName = myWnd.Document.Name

 If InStr(thisName, "zzF") > 0 Then

 gottaDoc = True

 myWnd.Document.Activate

 Beep

 Exit For

 End If

Next myWnd

And the other method:

gottaDoc = False

For Each thisDoc In Documents

 thisName = thisDoc.Name

 If InStr(thisName, "zzF") > 0 Then

 gottaDoc = True

 thisDoc.Activate

 Exit For

 End If

Next thisDoc

Just looking in my ‘TheMacros’ file, I see that I use the former method thirteen times and the latter six times. What I

now never use is:

numDocs = Application.Documents.Count

For i = 1 To numDocs

 Set thisDoc = Application.Documents(i)

25

 thisName = thisDoc.Name

 If InStr(thisName, "zzF") > 0 Then

 thisDoc.Activate

 Exit For

 End If

Next i

There were times when it came up with the error:

 Run-time error '5941':

 The requested member of the collection does not exist.

And when I checked, I found that numDocs was, say four when, in fact, there were only three open Word files, so the

fourth file it was looking for didn’t exist. It wasn’t a repeatable error – a programmer’s nightmare!

So that’s why I use the command: For Each ... In.

But remember that, with the In Application.Windows version, the user might have two or more windows open

for each file. If that’s crucial then you could use something like this (which I use in FRedit):

allFileNames = ""

For Each myDoc In Documents

 myFullName = myDoc.FullName

 If InStr(allFileNames, myFullName) = 0 Then

... do various things with this myDoc

 allFileNames = allFileNames & myFullName

 End If

Next myDoc

Copy text out into a new file

If you want to scrape the text out into a new file, perhaps so that you can analyse it without affecting the original, the

natural thought would be to use copy and paste – a bad idea for all sorts of reasons! Instead, you can use this:

Set rng = ActiveDocument.Content

Documents.Add

Selection.FormattedText = rng.FormattedText

Or if you only want pure text and no formatting, use:

Set rng = ActiveDocument.Content

Documents.Add

Selection.Text = rng.Text

Copying into a new file in this way avoids using the clipboard, which is then available for other uses, if necessary, and

it seems to be slightly quicker, but it’s only fractions of a second. (It also avoids the error that used to annoy me when

I closed Word: “You placed a lot of content on the clipboard. Do you want this content to be available to other

applications after you quit Word?”)

Note that this only copies the main text, not text in end/footnotes or text boxes. If you want absolutely all the text, you

could use my CopyTextWithSomeFeatures macro, though it doesn’t give you the full formatting (styles etc.) that you

get by using FormattedText, but rather just the pure text, plus a remembrance of bold, italic, super/subscript, etc.:

Call CopyTextWithSomeFeatures

26

Doing things in specified places/files

You can do something in a specific named file. For example, to type some text at the top of a specific file:

Set rng = Documents("zzSwitchList.doc").Content

rng.InsertBefore Text:="Hello" & vbCr

but remember that if the file ‘zzSwitchList.doc’ is not open, the macro will give a ‘Bad file name’ error.


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                            

 

If you have some text selected, you could do things at different places within it. For example, this extract finds the 

third paragraph within the selection, then makes the second word of the paragraph bold and the fourth character within 

that word big, selects it and then goes back to the original selection after you’ve pressed OK: 

 
Set rngSel = Selection.range.Duplicate 

Set rng = rngSel.Paragraphs(3).range 

Set rng = rng.Words(4) 

rng.Font.Bold = True 

Set rng = rng.Characters(2) 

rng.Font.Size = 40 

rng.Select 

MsgBox "Look!" 

rngSel.Select 

 

but beware that if it said Set rng = rngSel.Paragraphs(3).range when only two paragraphs were 

selected, it would generate an error and ditto if the numbers of words and characters are more than are available. But 

I’m just trying to demonstrate what different ranges and selections you can make. 

 

Have you noticed that to set a range in paragraphs, you have to use Paragraphs(30).range, whereas for 

Words and Characters, you don’t need the .range. I’ve no idea why! Each time I use these, I try with or without a 

.range and see if it errors (I can never remember). 

 

And you can do sentences to: 

 
Set rng = rngSel.Sentences(3) 

 

And to highlight a selection or a range in a colour, or change font colour, use, for example: 

 
Selection.range.HighlightColorIndex = wdGray25 

 

Selection.range.Font.ColorIndex = wdBlue 

 

' Make the third word of the selection red 

Set rng = Selection.range.Duplicate 

rng.Words(3).Font.Color = wdColorRed 

 

(See below for explanation of Color/ColourIndex.)  

Find and replace 

To find and replace only within the selected area: 

 
Set rng = Selection.range.Duplicate 

 

With rng.Find 

  .ClearFormatting 

Commented [PB13]: Done as far as here. 



27 

 

  .Replacement.ClearFormatting 

  .Text = "cat" 

  .Wrap = False 

  .Replacement.Text = "dog" 

  .Execute Replace:=wdReplaceAll 

End With 

 

You have to set .Wrap = False because if you were to use .Wrap = wdFindContinue it would F&R the whole of 

the document (well, the main text story). 

 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                            


If you do an F&R from within a macro, VBA assumes only the main story. So if you want to do the F&R in the

foot(end)notes as well, use:

fnNum = ActiveDocument.Footnotes.Count

enNum = ActiveDocument.Endnotes.Count

For j = 1 To 3

 If j = 1 And fnNum = 0 Then j = 2

 If j = 2 And enNum = 0 Then j = 3

 Select Case j

 Case 1: Set rng = ActiveDocument.StoryRanges(wdFootnotesStory)

 Case 2: Set rng = ActiveDocument.StoryRanges(wdEndnotesStory)

 Case 3: Set rng = ActiveDocument.Content

 End Select

 DoEvents

 With rng.Find

 .ClearFormatting

 .Replacement.ClearFormatting

 .Text = myFind

 .Replacement.Text = myReplace

 .Wrap = wdFindContinue

 .Execute Replace:=wdReplaceAll

 End With

Next j

You can also extend the F&R to the text in text boxes, but this is more complex. FRedit has that facility, so if you

need to F&R your textboxes, you’ll need to pinch that section of code frpom FRedit.

Finding things – words

You can’t use F&R to say “Find any one of the following bits of text”, but if you’re trying to find any one of a number

of individual words, you can use something like this. It was aimed at the task of selecting the next conjunction, but it

does a search of the selected text for “the next occurrence of any one of these words”. If no text is selected, it searches

from the cursor towards the end of the file.

Sub SearchTheseWords()

' Version 28.11.18

' Finds the next occurrence of any of a list of words

myWords = ":and:or:but:so:yet:if:"

Set rng = Selection.range.Duplicate

' If only a tiny selection...

If rng.Words.Count < 3 Then rng.Collapse wdCollapseEnd

28

' or nothing selected, search from cursor to the end of the file

If rng.Start = rng.End Then

 rng.End = ActiveDocument.Content.End

End If

myWords = ":" & myWords & ":"

For Each wd In rng.Words

 myTest = ":" & LCase(Trim(wd)) & ":"

 If InStr(myWords, myTest) > 0 Then

 wd.Select

 Exit For

 End If

Next wd

End Sub

Finding things – highlights/font attributes

The problem with searching for a particular font colour is that if your selection/range includes more than one colour,

the colour number is reported as 9999999. So to be sure to find one colour only, you’d have to check every single

character – slooow!

An alternative tactic is to check the colour of sections of text. If you do not get the answer 9999999, you know

whether that section is/is not the colour you want. If it has mixed colours, then subdivide into smaller sections.

My technique is to check paragraphs, then words and then, if necessary, characters. So in this code section, we’re

looking for text in highlight colour myHighlight and then applying a strikethrough to that colour of highlighted

text.

mixedColour = 9999999
For Each par In rng.Paragraphs

 col = par.range.HighlightColorIndex

 If col <> mixedColour Then

 If col = myHighlight Then par.range.Font.StrikeThrough = False

 Else

 For Each wd In par.range.Words

 col = wd.HighlightColorIndex

 If col <> mixedColour Then

 If col = myHighlight Then wd.Font.StrikeThrough = False

 Else

 For Each ch In wd.Characters

 col = ch.HighlightColorIndex

 If col <> mixedColour Then

 If col = myHighlight Then ch.Font.StrikeThrough = False

 End If

 DoEvents

 Next ch

 End If

 DoEvents

 Next wd

 End If

 DoEvents

Next par

Having watched a similar piece of code in action (using Selection, not rng), I could see that it was going quite slowly,

so I had an idea for speeding it up: instead of using paragraph −> word −> character, I decided to use:

29

paragraph −> sentence −> word −> character.

Unfortunately, it fails miserably! If you want to see why, run this code segment:

ActiveDocument.Content.HighlightColorIndex = wdBrightGreen

For Each sn In ActiveDocument.Sentences

 sn.HighlightColorIndex = wdNoHighlight

Next sn

This should highlight the whole text and then remove the highlight from every single sentence in the document,

shouldn’t it? Well, you’ll see that it leaves some text in green; it misses out some of the sentences, usually associated

with ?, !, etc., and/or parentheses.

Or you could use this macro:

Sub HighlightAllSentences()

For Each sn In ActiveDocument.Sentences

 i = i + 1

 If i = 2 Then myColour = wdColorRed: i = 0

 If i = 1 Then myColour = wdColorBlue

 sn.Font.Color = myColour

 sn.Font.Bold = True

Next sn

End Sub

Nice idea, Paul (not)!

Later: I’ve just tried the following, and, unlike the For Each method, it works 100%!

ActiveDocument.Content.HighlightColorIndex = wdBrightGreen

For i = 1 To ActiveDocument.Sentences.Count

 ActiveDocument.Sentences(i).HighlightColorIndex = wdNoHighlight

 DoEvents

Next i

i.e. it does catch every single semtence.

OK, so I can try the ‘paragraph −> sentence −> word −> character’ method again, provided I use the For i = 1

To Whatever.Count.

Here is a segment of code derived from what I’ve just written into FRedit. If you try it, it will find – in the fastest

possible way – any text in bright green, amongst other colours of highlighting.

For Each par In rngNow.Paragraphs

 If par.range.HighlightColorIndex > 9999 Then

 For x = 1 To par.range.Sentences.Count

 If par.range.Sentences(x).HighlightColorIndex > 9999 Then

 For Each wd In par.range.Words

 If wd.HighlightColorIndex > 9999 Then

 For Each ch In wd.Characters

 If ch.HighlightColorIndex = fHiColour Then

 ch.Font.Emboss = True

 End If

 Next ch

 Else

 If wd.HighlightColorIndex = fHiColour Then

 wd.Font.Emboss = True

 End If

30

 End If

 DoEvents

 Next wd

 End If

 DoEvents

 Next x

 Else

 If par.range.HighlightColorIndex = fHiColour Then

 If Len(par.range.Text) > 1 Then par.range.Font.Emboss = True

 End If

 End If

Next par

fHiColour = wdBrightGreen

Set rngNow = ActiveDocument.Content

rngNow.Font.Emboss = False

For Each par In rngNow.Paragraphs

 If par.range.HighlightColorIndex > 9999 Then

 For x = 1 To par.range.Sentences.Count

 If par.range.Sentences(x).HighlightColorIndex > 9999 Then

 For Each wd In par.range.Sentences(x).Words

 If wd.HighlightColorIndex > 9999 Then

 For Each ch In wd.Characters

 If ch.HighlightColorIndex = fHiColour Then

 ch.Font.Emboss = True

 End If

 Next ch

 Else

 If wd.HighlightColorIndex = fHiColour Then

 wd.Font.Emboss = True

 End If

 End If

 DoEvents

 Next wd

 Else

 If par.range.Sentences(x).HighlightColorIndex = fHiColour Then

 par.range.Sentences(x).Font.Emboss = True

 End If

 End If

 DoEvents

 Next x

 Else

 If par.range.HighlightColorIndex = fHiColour Then

 If Len(par.range.Text) > 1 Then par.range.Font.Emboss = True

 End If

 End If

Next par

In case you’re interested to know, this code is rarely used by FRedit because it’s only required if the user is asking to

change something in one highlight colour into a different highlight colour. For example, here the user is asking to

leave most of the cats alone and only change those cats that are highlighted in green.

cat|dog

Because you can’t do an F&R for a specific colour of highlight (only whether highlighting is ON or OFF), I use the

above code to add an Emboss attribute to all the text that’s in a particular highlight colour. Then I can do the F&R

with Emboss as one Find characteristic, and then later remove all the Embossing. (This is explained in the section

below about F&R.)

31

More about F&R

If you are doing F&Rs using Selection, and you want to preserve the original Find and Replace values after the

macro has finished then use, for example:

oldFind = Selection.Find.Text

oldReplace = Selection.Find.Replacement.Text

With Selection.Find

 .ClearFormatting

 .Replacement.ClearFormatting

 .Text = "this"

 .Replacement.Text = "that"

 .Execute Replace:=wdReplaceAll

End With

Selection.Find.Text = oldFind

Selection.Find.Replacement.Text = oldReplace

However, if you only use ranges, such as:

Set rng = ActiveDocument.Content

With rng.Find

 .ClearFormatting

 .Replacement.ClearFormatting

 .Text = "this"

 .Replacement.Text = "that"

 .Execute Replace:=wdReplaceAll

End With

then you should find that the original Find and Replace value are retained (well, they are with Word 2010).

Search and destroy (joke!)

The following is a dummy macro that I use time and again. It sets up a search for something and then repeatedly looks

for that ‘thing’ and, if it finds it, it does something to it, and then looks to see if there’s another occurrence, but if

there are no more of them, it stops.

First set a range:

Set rng = ActiveDocument.Content

or use...

Set rng = Selection.range.Duplicate

then...

' Go and find the first occurrence

With rng.Find

 .ClearFormatting

 .Replacement.ClearFormatting

 .Text = "thing"

 .Wrap = wdFindStop

 .Replacement.Text = ""

 .Forward = True

 .MatchWildcards = False ' Set as required

32

 .MatchWholeWord = False

 .MatchSoundsLike = False

 .Execute

End With

myCount = 0 ' Set as required

Do While rng.Find.Found = True

 myCount = myCount + 1

' Note where the end of the found item is

 endNow = rng.End

' Do various things with this “thing” it has found

' Be sure you're past the previous occurrence

 rng.End = endNow

 rng.Collapse wdCollapseEnd

' Go and find the next occurence (if there is one)

 rng.Find.Execute

Loop

MsgBox "Changed: " & myCount

Changing attributes of a selection by F&R

If you want to change various font attributes in a selection with F&R, you can specify them as follows.

Set rng = Selection.range.Duplicate

With rng.Find

 .ClearFormatting

 .Replacement.ClearFormatting

 .Text = "i"

 .MatchCase = False

 .Wrap = False

 .Replacement.Text = "^&"

 .Replacement.Font.Size = 20

 .Replacement.Font.Color = wdColorRed

 .Replacement.Font.StrikeThrough = True

 .Replacement.Font.Underline = True

 .Replacement.Highlight = True

 .Execute Replace:=wdReplaceAll

End With

Note that I used .Replacement.Font.Color = wdColorRed which is the colour as set by hexadecimal

(number to base 16) values, in this case, wdColorRed is 000000FF. I could have used:

.Replacement.Font.ColorIndex = wdRed, in this case, wdRed has the value 6.

Changing highlight colours using F&R is different. Although you can give the font colour a value in an F&R, such as

wdColorRed, highlighting is only ever True or False. If True, then it will appear in the currently selected highlight

colour – whatever that happens to be. So if want to use a specific highlight colour with F&R, you need to memorise

the current highlight colour, change the colour, use it and then, before you exit the macro, restore the original highlight

colour:

oldColour = Options.DefaultHighlightColorIndex

Options.DefaultHighlightColorIndex = wdBrightGreen

' Do your find and replace here

33

Options.DefaultHighlightColorIndex = oldColour

Reading the font colour

For the font colour of the current selection:

myColourIndex = Selection.range.Font.ColorIndex

myColour = Selection.range.Font.Color

The first gives the simple colour number, so red is 6, and green is 11. The second is actually a hex number, so to see it

easily (meaningfully), use Hex(myColour), for which, red is 000000FF, and green is 0050B000 and black is

FF000000.

If the selection includes more than one colour, both Color and ColorIndex give the seven-digit value 9999999 (a

meaningless 98967F in hex).

For the colour used by the style within the selection:

paraColourIndex = ActiveDocument.Styles(Selection.range.Style).Font.ColorIndex

paraColour = ActiveDocument.Styles(Selection.range.Style).Font.Color

The following macro checks a selection, showing if another colour has been applied to the basic font colour of that

style, and whether there is a mix of colours:

Sub FontColourReader()

' Version 21.11.18

' Reads style font colour + any applied colour

myMix = 9999999

paraColourIndex = ActiveDocument.Styles(Selection.range.Style).Font.ColorIndex

paraColour = ActiveDocument.Styles(Selection.range.Style).Font.Color

myColourIndex = Selection.range.Font.ColorIndex

myColour = Selection.range.Font.Color

myMessage = ""

myMessage = myMessage & "Style font colour = " & Hex(paraColour) & vbCr

If myColour = myMix Then

 myMessage = myMessage & "Mixed colours" & vbCr

Else

 If paraColour = myColour Then

 myMessage = myMessage & "No applied colour" & vbCr

 Else

 myMessage = myMessage & "Applied colour = " & Hex(myColour) & vbCr

 End If

End If

MsgBox myMessage

myMessage = ""

myMessage = myMessage & "Style font colour = " & paraColourIndex & vbCr

If myColourIndex = myMix Then

 myMessage = myMessage & "Mixed colours" & vbCr

Else

 If paraColourIndex = myColourIndex Then

 myMessage = myMessage & "No applied colour" & vbCr

 Else

34

 myMessage = myMessage & "Applied colour = " & myColourIndex & vbCr

 End If

End If

MsgBox myMessage

End Sub

Reading the font name and size

This macro checks a selection, showing if another font name or font size has been applied to the basic font name and

size of that style, and whether there is a mix of names/sizes. The font size returned for a mix is, again, 9999999, but

for a selection of mixed font names, it returns a null string, "":

Sub FontNameAndSizeReader()

' Version 21.11.18

' Reads style font Name + any applied Name

myMixName = ""

paraName = ActiveDocument.Styles(Selection.range.Style).Font.Name

myName = Selection.range.Font.Name

myMessage = ""

myMessage = myMessage & "Style font name = " & paraName & vbCr

If myName = myMixName Then

 myMessage = myMessage & "Mixed names" & vbCr

Else

 If paraName = myName Then

 myMessage = myMessage & "No applied name" & vbCr

 Else

 myMessage = myMessage & "Applied name = " & myName & vbCr

 End If

End If

MsgBox myMessage

myMix = 9999999

paraSize = ActiveDocument.Styles(Selection.range.Style).Font.Size

mySize = Selection.range.Font.Size

myMessage = ""

myMessage = myMessage & "Style font Size = " & paraSize & vbCr

If mySize = myMix Then

 myMessage = myMessage & "Mixed Sizes" & vbCr

Else

 If paraSize = mySize Then

 myMessage = myMessage & "No applied size" & vbCr

 Else

 myMessage = myMessage & "Applied size = " & mySize & vbCr

 End If

End If

MsgBox myMessage

End Sub

Information about styles

For a description of a given style use, say, ActiveDocument.Styles("Heading 1").Description, and

the style can also be specified as, say, wdStyleHeading1, as here:

nStyle = ActiveDocument.Styles(wdStyleNormal).Description & vbCr & vbCr

35

H1Style = ActiveDocument.Styles(wdStyleHeading1).Description & vbCr

Selection.TypeText Text:="Normal style: " & nStyle

Selection.TypeText Text:="Heading 1: " & H1Style

The result, from this file, is:

Normal style: Font: (Default) Times New Roman, 11 pt, Left

 Line spacing: single, Widow/Orphan control, Style: Quick Style

Heading 1: Font: (Default) Arial, 22 pt, Bold, Kern at 16 pt, Space

 Before: 18 pt

 After: 3 pt, Keep with next, Level 1, Style: Linked, Quick Style

 Based on: Normal

 Following style: Normal

Applying shading, foreground and background colours

I confess to not knowing what the difference is between foreground and background colours, but have a play and see

what you can work out!

' Add 10% grey tinted background

Selection.Shading.Texture = wdTexture10Percent

' Back to no tint

Selection.Shading.Texture = wdTextureNone

' Yellow background

Selection.Shading.BackgroundPatternColor = wdColorYellow

' Return to no background

Selection.Shading.BackgroundPatternColor = wdColorAutomatic

' Yellow foreground (has a remarkably similar effect!)

Selection.Shading.ForegroundPatternColor = wdColorYellow

' This makes it black!

Selection.Shading.ForegroundPatternColor = wdColorAutomatic

' This makes it white

Selection.Shading.ForegroundPatternColor = wdColorWhite

' Also available for clearing background

Selection.Shading.Texture = wdTextureNone

' For some weird effects, try this

With Selection.Shading

 .Texture = wdTextureDarkDiagonalCross

 .ForegroundPatternColorIndex = wdBlue

 .BackgroundPatternColorIndex = wdYellow

End With

Beep and double-beep!

Doing a beep is obvious, but it’s sometimes useful to give the user a double-beep. For example, SpellingSuggest

gives a single beep if the word is spelt correctly, but a double-beep if it’s a spelling error and has therefore been

corrected. You may need to increase the delay time (0.2) if your system gives two beeps that just sound like one.

Beep

myTime = Timer

36

Do

Loop Until Timer > myTime + 0.2

Beep

Timing things

In order to time some process, say an analysis, you record the time at the beginning:

timeStart = Timer

and then at the end:

totTime = Timer - timeStart

If you want to give the user a chance to not show how long it took then put, at the beginning,

showTime = True or False

 and then

If showTime = True And totTime > 60 Then

 MsgBox ((Int(10 * totTime / 60) / 10) & _

 " minutes")

End If

Setting up arrays

You can set up an array of words (or phrases) so that you can do things with them, one by one. In this case, it’s just

displaying the words to the user, but there will obviously be more interesting applications!

allWords = ",red,blue,green"

myWord = Split(allWords, ",")

numWords = UBound(myWord)

For i = 1 To numWords

 MsgBox myWord(i)

Next i

The comma is what is called the ‘list separator’, but note too that there is a comma in front of my first word. That’s

because arrays were invented by programmers and they think that number ranges should start with zero! So if the list

was:

allWords = "black,red,blue,green"

then you would find that myWord(0) (that’s zero, not capital ‘O’) has the value "black".

Note that the character used as a list separator can be anything you like. In the following, there are commas in the text,

so I’ve used the vertcal bar (as used in FRedit):

allWords = "|fish, chips, and peas|ham, egg, and chips|pie, mash, and beans"

myWord = Split(allWords, "|")

numWords = UBound(myWord)

For i = 1 To numWords

 MsgBox myWord(i)

Next i

37

User input

We’ve already used, say, MsgBox myWord(i) as a way of displaying something, but the only input the user can

make is OK. If you press the Escape key, it has exactly the same effect of making the macro continue on the line after

the MsgBox.

Another more flexible example of using MsgBox is:

myResponse = MsgBox(myWord(i), vbOKCancel, "Food display")

If myResponse <> vbOK Then Exit Sub

So clicking Cancel or pressing the Escape key stops the macro.

And (using the example from the arrays section) you can also offer a No option:

allWords = "|Fish, chips, and peas|Ham, egg, and chips|Pie, mash, and beans"

myWord = Split(allWords, "|")

For i = 1 To numWords

 myResponse = MsgBox(myWord(i), vbYesNoCancel, "Food display")

 If myResponse = vbNo Then Beep

 If myResponse = vbCancel Then Exit Sub

Next i

Here’s the output:

Here’s another example
myResponse = MsgBox("Generate error word list?", vbQuestion _

 + vbYesNoCancel, "AuthorDateFormatter")

If myResponse = vbCancel Then Exit Sub

If myResponse = vbYes Then generateList = True

Here’s the output:

If you want to input some text, you could use, say:

mySurname = InputBox("Surname?", "My naming macro")

If the user just presses Enter without typing in a name, or presses Escape or clicks Cancel, then myInput is a zero-

length string, "".

Here’s the output:

If you want to input a number, you could use, say:

myInput = InputBox("Option number?", "Macro name")

38

myNumber = Val(myInput)

If the user just presses Enter without typing in a number, or presses Escape or clicks Cancel, then myNumber has the

value zero.

You can also use a default value to offer the user, such as the previous option chosen by the user:

myDefaultValue = "Whatever!"

myRequirement = InputBox("What do you want?", "Macro name", myDefaultValue)

String handling techniques

The following code isn’t rocket science:

myText = "My sample string"

myLeft = Left(myText, 2)

myRight = Right(myText, 4)

myMiddle = Mid(myText, 4, 6)

For i = 1 To Len(myText)

 myChar = Mid(myText, i, 1)

 Debug.Print myChar

Next

I’m sure you’ll be able to work out that the three commands generate: ‘My’, ‘ring’ and ‘sample’.

Then the loop goes through the individual characters and displays them one by one in VBA’s ‘Immediate mode’ area.

(Press Ctrl-G in VBA to open the Immediate mode window.)


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                            

 

To select the part of a string after a specific character, you can use InStr. 

 

This example extracts the text inside the parentheses: 

 
parenOpen = InStr(mySample, "(") 

myText = Mid(mySample, parenOpen + 1) 

 

parenClose = InStr(myText, ")") 

myText = Left(myText, parenClose - 1) 

 

Or you could do it like this. 

 
parenOpen = InStr(mySample, "(") 

parenClose = InStr(mySample, ")") 

 

myLen = parenClose - parenOpen 

myText = Mid(mySample, parenOpen + 1, myLen - 1) 

 

The thing you have to be careful of is what will happen if one of the characters is missing. If there’s no close 

parenthesis, parenClose comes out as zero, so you get an ‘Invalid procedure call or argument’ in both cases. 

 

Using the Like function 

This function allows some flexibility in comparing strings. You have ‘?’ to mean a single character, and ‘*’ to mean 

any text. 



39 

 

 
myTest = "?ome*g" 

 

Dim myText(4) As String 

myText(1) = "Something" 

myText(2) = "something" 

myText(3) = "somewhat" 

myText(4) = "homecoming" 

 

For i = 1 To 4 

  If myText(i) Like myTest Then 

    MsgBox myText(i) & " is a match" 

  Else 

    MsgBox myText(i) & " is NOT a match" 

  End If 

Next i 

 

For this test, all three will be a match, except ‘somewhat’. 

 

Probably more helpful are tests as in this example: 

 
Do 

  myInput = InputBox("Enter some text") 

 

  If myInput Like "[A-Z]" Then 

    MsgBox "Single uppercase letter" 

  End If 

 

  If Left(myInput, 3) Like "[A-Z][a-z]*" Then 

    MsgBox "Looks like a word with an initial capital" 

  End If 

 

  If myInput Like "[yY]*" Then 

    MsgBox "Yes!!" 

  End If 

   

  If myInput Like "[Nn]*" Then 

    MsgBox "No way!!" 

  End If 

   

  If myInput Like "#" Then 

    MsgBox "Single digit" 

  End If 

   

  If myInput Like "[0-9]" Then 

    MsgBox "Single digit" 

  End If 

Loop Until myInput = "" 

 

I think these should be reasonably self-explanatory. Note that ‘#’ has the same meaning as ‘[0-9]’ 

Error handling 

To switch error handling on: 
On Error GoTo ReportIt 

 

Then at the end of the macro, you can use something like this: 

 



40 

 

 
Exit Sub 

ReportIt: 

If Err.Number = 5174 Then 

  MsgBox ("Couldn't find file: " & myFileName) 

Else 

  On Error GoTo 0 

  Resume 

End If 

 

End Sub 

 

What happens here is that when an error occurs, if it’s a File Not Found error (which is the type of error that can be 

detected by testing whether Err.Number = 5174), you report that to the user, telling the which file it couldn’t find, and 

then exit the macro. 

 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                       

I’m never quite sure what On Error Resume Next does, but let’s look at an example:

(Comment from the ever-helpful Howard Silcock: When you include this statement, if any subsequent statement

generates an error, then the error is ignored and execution proceeds to the next statement. This remains in force until

you include a statement such as On Error Goto 0, which resets to the normal behaviour.)

We’re searching of a specific file, tryThisName, and if it’s not found we report back to the user.

On Error Resume Next

 If an error occurs, keep going on to this next line...
If tryThisName <> "" Then

 Try to open a file of this name...
 Documents.Open tryThisName

 If there isn’t one, it errors
 If Err.Number = 5174 Then

 Tell the user you couldn’t find it
 MsgBox ("Can't find file: " & tryThisName)

 Clear the error condition
 Err.Clear

 Else

 If we did find a file, switch the error reporting off, just in case some

 other error occurs...
 On Error GoTo 0

 Now we can carry on as normal...
 Application.Resize Width:=myWidth, Height:=myHeight

 Set wasSelected = Selection.range.Duplicate

 Selection.HomeKey Unit:=wdStory

 With Selection.Find

 etc. etc. etc.

 End If

End If

If application visibility is being switched off, you do need an error handler to switch it back on because all the Word

windows will be invisible, if not!

On Error GoTo ReportIt

and then...

ReportIt:

41

Application.Visible = True

On Error GoTo 0

Resume

End Sub

Similarly, if you’re switching ScreenUpdating off, to speed up execution, then add an error-handler to switch it back

on again.

On Error GoTo ReportIt

and then...

ReportIt:

Application.ScreenUpdating = True

On Error GoTo 0

Resume

End Sub

Random text

For five paragraphs of 10 ‘Latin’ sentences each, just type:

=lorem(5,10)

Here’s an example paragraph of 10 sentences:

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Maecenas porttitor congue massa. Fusce

posuere, magna sed pulvinar ultricies, purus lectus malesuada libero, sit amet commodo magna eros quis

urna. Nunc viverra imperdiet enim. Fusce est. Vivamus a tellus. Pellentesque habitant morbi tristique

senectus et netus et malesuada fames ac turpis egestas. Proin pharetra nonummy pede. Mauris et orci.

Aenean nec lorem.

And or five paragraphs of 10 ‘English’ sentences each, use:

=rand(5,10)

Here’s an example paragraph of just four sentences (they’re longer than the Latin ones):

On the Insert tab, the galleries include items that are designed to coordinate with the overall look of your

document. You can use these galleries to insert tables, headers, footers, lists, cover pages, and other

document building blocks. When you create pictures, charts, or diagrams, they also coordinate with your

current document look. You can easily change the formatting of selected text in the document text by

choosing a look for the selected text from the Quick Styles gallery on the Home tab.

And here’s another one, sent in by Ken Endacott:

=rand.old(5,10)

Here’s an extract of what it produces:

The quick brown fox jumps over the lazy dog. The quick brown fox jumps over the lazy dog. The quick

brown fox jumps over the lazy dog. The quick brown fox jumps over the lazy dog. The quick brown fox

jumps over the lazy dog. The quick brown fox jumps over the lazy dog.

And I have them in my MultiSwitch list as:

ll

=lorem(5,10)

42

ee

=rand(5,10)

Really useful, if you need some text to play with.

All sorts of information

There’s lots of information available from Selection.Information()

e.g. Selection.Information(wdInCommentPane)

(Confession time! I found this on the internet ages ago, but I can’t acknowledge the source as I can’t now find where

it came from, sorry. It said it was for Word 2003, but the ones I’ve tried have worked OK.)

wdActiveEndAdjustedPageNumber returns the number of the page that contains the active end of the specified

selection or range. If you set a starting page number or make other manual adjustments, returns the adjusted page

number (unlike wdActiveEndPageNumber).

wdActiveEndPageNumber returns the number of the page that contains the active end of the specified selection or

range, counting from the beginning of the document. Any manual adjustments to page numbering are disregarded

(unlike wdActiveEndAdjustedPageNumber).

wdActiveEndSectionNumber returns the number of the section that contains the active end of the specified

selection or range.

wdAtEndOfRowMarker returns True if the specified selection or range is at the end-of-row mark in a table.

wdCapsLock returns True if Caps Lock is in effect.

wdEndOfRangeColumnNumber returns the table column number that contains the end of the specified selection or

range.

wdEndOfRangeRowNumber returns the table row number that contains the end of the specified selection or range.

wdFirstCharacterColumnNumber returns the character position of the first character in the specified selection

or range. If the selection or range is collapsed, the character number immediately to the right of the range or selection

is returned (this is the same as the character column number displayed in the status bar after "Col").

wdFirstCharacterLineNumber returns the character position of the first character in the specified selection or

range. If the selection or range is collapsed, the character number immediately to the right of the range or selection is

returned (this is the same as the character line number displayed in the status bar after "Ln").

wdFrameIsSelected returns True if the selection or range is an entire frame or text box.

wdHeaderFooterType returns a value that indicates the type of header or footer that contains the specified

selection or range, as shown in the following table.

wdHorizontalPositionRelativeToPage returns the horizontal position of the specified selection or range;

this is the distance from the left edge of the selection or range to the left edge of the page measured in points (1 point

= 20 twips, 72 points = 1 inch). If the selection or range isn't within the screen area, returns −1.

wdHorizontalPositionRelativeToTextBoundary returns the horizontal position of the specified

selection or range relative to the left edge of the nearest text boundary enclosing it, in points (1 point = 20 twips, 72

points = 1 inch). If the selection or range isn't within the screen area, returns - 1.

43

wdInClipboard For information about this constant, consult the language reference Help included with Microsoft

Office Macintosh Edition.

wdInCommentPane returns True if the specified selection or range is in a comment pane.

wdInEndnote returns True if the specified selection or range is in an endnote area in print layout view or in the

endnote pane in normal view.

wdInFootnote returns True if the specified selection or range is in a footnote area in print layout view or in the

footnote pane in normal view.

wdInFootnoteEndnotePane returns True if the specified selection or range is in the footnote or endnote pane in

normal view or in a footnote or endnote area in print layout view. For more nformation, see the descriptions of

wdInFootnote and wdInEndnote in the preceding paragraphs.

wdInHeaderFooter returns True if the selection or range is in the header or footer pane or in a header or footer in

print layout view.

Value Type of header or footer

−1 None (the selection or range isn't in a header or

footer)

0 Even page header

1 Odd page header (or the only header, if there

aren’t odd and even headers)

2 Even page footer

3 Odd page footer (or the only footer, if there aren’t

odd and even footers)

4 First page header

5 First page footer

wdInMasterDocument returns True if the selection or range is in a master document (that is, a document that

contains at least one subdocument).

wdInWordMail returns True if the selection or range is in [as the original text of this item read...] the header or

footer pane or in a header or footer in print layout view. [That’s obviously someone’s copy and paste from the earlier

item on wdInHeaderFooter! I don’t know what it should say as I do all my email on an old-fashioned Acorn

Computers email system. Any ideas for a corrected text here, please?]

Value Location

0 The selection or range isn’t in an email message.

1 The selection or range is in an email message you are sending.

2 The selection or range is in an email you are reading.

wdMaximumNumberOfColumns returns the greatest number of table columns within any row in the selection or

range.

wdMaximumNumberOfRows returns the greatest number of table rows within the table in the specified selection or

range.

wdNumberOfPagesInDocument returns the number of pages in the document associated with the selection or

range.

wdNumLock returns True if Num Lock is in effect.

wdOverType returns True if Overtype mode is in effect. The Overtype property can be used to change the state of

the Overtype mode.

44

wdReferenceOfType returns a value that indicates where the selection is in relation to a footnote, endnote, or

comment reference, as shown in the following table.

Value Description

−1 The selection or range includes but isn’t limited to a

footnote, endnote, or comment reference.

0 The selection or range isn’t before a footnote, endnote,

or comment reference.

1 The selection or range is before a footnote reference.

2 The selection or range is before an endnote reference.

3 The selection or range is before a comment reference.

wdRevisionMarking returns True if change tracking is in effect.

wdSelectionMode returns a value that indicates the current selection mode, as shown in the following table.

Value Selection mode

0 Normal selection

1 Extended selection (‘EXT’ appears on the status bar)

2 Column selection. (‘COL’ appears on the status bar)

wdStartOfRangeColumnNumber returns the table column number that contains the beginning of the selection or

range.

wdStartOfRangeRowNumber returns the table row number that contains the beginning of the selection or range.

wdVerticalPositionRelativeToPage returns the vertical position of the selection or range; this is the

distance from the top edge of the selection to the top edge of the page measured in points (1 point = 20 twips, 72

points = 1 inch). If the selection isn't visible in the document window, returns −1.

wdVerticalPositionRelativeToTextBoundary returns the vertical position of the selection or range

relative to the top edge of the nearest text boundary enclosing it, in points (1 point = 20 twips, 72 points = 1 inch).

This is useful for determining the position of the insertion point within a frame or table cell. If the selection isn't

visible, returns −1.

wdWithInTable returns True if the selection is in a table.

wdZoomPercentage returns the current percentage of magnification as set by the Percentage property.

Example

This example displays the current page number and the total number of pages in the active document.

MsgBox "The selection is on page " & _

 Selection.Information(wdActiveEndPageNumber) & " of page " _

 & Selection.Information(wdNumberOfPagesInDocument)

If the selection is in a table, this example selects the table.

If Selection.Information(wdWithInTable) Then _

 Selection.Tables(1).Select

This example displays a message that indicates the current section number.

45

Selection.Collapse Direction:=wdCollapseStart

MsgBox "The insertion point is in section " & _

 Selection.Information(wdActiveEndSectionNumber)

[ignore] FRedit list for formatting listings

~^t*^13|^&

Genesis of a macro

What I want to do here is the narrate what happened as I wrote a macro, hoping that the process itself will illustrate

various techniques. Here goes...

The issue was that someone had seen my NumbersToText macro, which can whizz along through the text and, when it

finds a number as figures, e.g. ‘342 soldiers’, it changes it to ‘three hundred and forty-two soldiers’, and they asked if

there was a macro that would change ‘three hundred and forty-two soldiers’ into ‘342 soldiers’.

The answer was no, but there is now: TextToNumber. So here’s the story.

Analyse the problem

The first stage was to think about all the ways in which numbers up to 999 only. But that illustrates the

problem of writing up about macros. As soon as I wrote that sentence, I realised that I really ought to

add 1000! I’ll do it when I’ve finished the write-up.) Here’s some rubbish text. THe b;lue are the normal

ways (in UK) that we express numbers in words, and the pink are a few ‘funnies’, which includes the

American way of expressed numbers. (Sorry, no offence to my transatlantic cousins intended!)

Sample here is three bits of text with forty things. But sixteen then three hundred and

forty-two soldiers a hundred and forty-two marched up the hill, followed by a

hundred boy scouts and one hundred and sixteen girl guides three hundred only is it

now things like he had forty two soldiers seventy-nine and American three hundred

forty-two Ah, but what about two hundred and six but what about two hundred and

sixteen but what about two hundred and forty. No chance with four hundred two, I

suppose?

As you can see, it’s going to be a quite complex process writing this macro.

List all the possible words

myUnits = ":one:two:three:four:five:six:seven:eight:nine:ten"

myTens = ":ten:twenty:thirty:forty:fifty:sixty:seventy:eighty:ninety:hundred"

myTeens = ":eleven:twelve:thirteen:fourteen:fifteen:sixteen:seventeen:

eighteen:nineteen"

allNumberWords = myUnits & myTens & myTeens & ":a:and:-:"

I’ve put them all in an order, so that 1–10 and the first ten words, so for a given word, say ‘three’, I can find it in the

list, then if I count the number of colons to the left (3), I’ve converted from a word to a number.

Then 11–20 are the tens, to ‘thirty’ will generate 13, so I can subtract 10 and multiply by 10 to get the 30.

Then 21–29 are the teens (you can do the calculation as your homework!), and the final odds and ends are also needed,

including the hyphen, which is a ‘word’ on its own as far as VBA is concerned.

Pick up the words into an array

To start simply, I assumed that the cursor was in the first word:

46

Set rng = Selection.range.Duplicate

rng.Expand wdWord

rng.MoveEnd wdWord, 8

Dim wd(8) As String

For i = 1 To 8

 thisWord = Trim(rng.Words(i))

 If InStr(allNumberWords, ":" & thisWord & ":") > 0 Then

 wd(i) = thisWord

 Debug.Print thisWord & " ";

 Else

 numWords = i - 1

 Exit For

 End If

Next i

The important learning elements are that the range, rng, starts as a zero-length range at the cursor.
 Set rng = Selection.range.Duplicate

Then we expand it to the whole of the current word
 rng.Expand wdWord

and then we load up the array, wd(), with the next eight words, one at a time:
 thisWord = Trim(rng.Words(i))

trimming off the trailing space.

Then if thisWord, with a colon added on each end, is in allNumberWords
 If InStr(allNumberWords, ":" & thisWord & ":") > 0 Then

Add it into the array
 wd(i) = thisWord

And so we can see what’s happening, we print it into the Immediate mode window of VBA:
 Debug.Print thisWord & " ";

and that line adds a space after it, then the semicolon at the end means don’t go down to a newline yet.

Having dropped off the end of the actual text-based number, we’ve got one too many words, so we take one off and

jump out of the For-Next loop (OK, some say it’s bad programming technique; I say it works well!):
 numWords = i - 1
 Exit For

The Immediate mode window of VBA is opened from the View tab, or with Ctrl-G (see the screenshot below).

Find code numbers for each word

Dim n(8) As Integer

For i = 1 To numWords

 wdPos = InStr(allNumberWords, ":" & wd(i) & ":")

 leftWords = Left(allNumberWords, wdPos)

 n(i) = Len(leftWords) - Len(Replace(leftWords, ":", ""))

 Debug.Print n(i), wd(i)

Next

So we now make up an array of all the numWords numbers equivalent to the words.

First find the position where the word (with colons either end) appears in allNumberWords:
 wdPos = InStr(allNumberWords, ":" & wd(i) & ":")

Then pick up leftWords, the words upto but not including the first colon around our word:
 leftWords = Left(allNumberWords, wdPos)

then we work out how many colons there are getting the length of leftWords then subtracting the length of the string

after replacing all the colons with nothing.
 n(i) = Len(leftWords) - Len(Replace(leftWords, ":", ""))

Here’s the output in Immediate mode for ‘three hundred and forty-two’:

47

Calculate the number of the text-based number

This has to be done by thinking of all the permutations and combinations of our list of number-words. And it has to be

done by thinking carefully about what the different possibilities are for each of the numbers of words. Here are the

possibles from the sample above (ignoring the pink ones as I went on to add those once I’d got the basics going), just

giving one example of each logically different options:

One word: three, forty, sixteen

Two words: a hundred, one hundred

Three words: seventy-nine

Four words: two hundred and sixteen, two hundred and forty

Six words: three hundred and forty-two

There are five possible values of numWords, so we set up a Select Case of this form:
Select Case numWords

 Case 1

 Case 2

 Case 3

 Case 4

 Case 5

48

 Case 6

 Case Else

End Select

Then each of the calculations goes in the gap under each Case number:

Select Case numWords

 Case 1

 myResult = n(1)

 If n(1) > 10 Then myResult = 10 * (n(1) - 10)

 If n(1) > 20 Then myResult = n(1) - 10

 Case 2

 If n(2) <> 20 Then ' "hundred"

 Beep

 Exit Sub

 End If

 myResult = n(1) * 100

 Case 3

 If n(2) <> 32 Then ' hyphen

 Beep

 Exit Sub

 End If

 myResult = 10 * (n(1) - 10) + n(3)

 Case 4

 If n(2) <> 20 Then ' "hundred"

 Beep

 Exit Sub

 End If

 myResult = n(4)

 If n(4) > 10 Then myResult = 10 * (n(4) - 10)

 If n(4) > 20 Then myResult = n(4) - 10

 myResult = myResult + 100 * n(1)

 Case 5

 If n(2) <> 20 Then ' "hundred"

 Beep

 Exit Sub

 End If

 myResult = 100 * n(1) + 10 * (n(3) - 10) + n(5)

 Case 6

 If n(2) <> 20 Then ' "hundred"

 Beep

 Exit Sub

 End If

 myResult = 100 * n(1) + 10 * (n(4) - 10) + n(6)

 Case Else

 Beep

 Exit Sub

End Select

Debug.Print myResult

MsgBox myResult

I won’t go through them all, but for Case 1 we have:
 myResult = n(1)

 If n(1) > 10 Then myResult = 10 * (n(1) - 10)

 If n(1) > 20 Then myResult = n(1) - 10

49

This works by first assuming it’s a one to nine number: i.e. the number is just n(1). But then we say, yes but if the

number is more than 10, it’s in the ten to ninety group. And then again if it’s >20 we say, no, it’s in the eleven to

nineteen, and do the calculation you worked out for homework!

Hopefully, that’s enough for you to see basically how they work. Your next homework then is to work out how each

of the calculations works.

Finally, I print the result in the Immediate mode and also in a MsgBox, so I can check that it works OK.

Type the number into the text

Now we need to type the number into the text, in place of the text-based number. This is done by the bits that are

highlighted.

For i = 1 To 8

 thisWord = Trim(rng.Words(i))

 If InStr(allNumberWords, ":" & thisWord & ":") > 0 Then

 wd(i) = thisWord

 Debug.Print thisWord & " ";

 allWords = allWords & thisWord & " "

 Else

 numWords = i - 1

 Exit For

 End If

Next i

rng.MoveEnd wdWord, numWords - 9

rng.MoveEndWhile cset:=" ",

Count:=wdBackward
rng.Select

Debug.Print

If wd(1) = "a" Then wd(1) = "one"

Dim n(8) As Integer

For i = 1 To numWords

 wdPos = InStr(allNumberWords, ":" & wd(i) & ":")

 leftWords = Left(allNumberWords, wdPos)

 n(i) = Len(leftWords) - Len(Replace(leftWords, ":", ""))

 Debug.Print n(i), wd(i)

Next

a = allWords

Select Case numWords

 Case 1

 myResult = n(1)

 If n(1) > 10 Then myResult = 10 * (n(1) - 10)

 If n(1) > 20 Then myResult = n(1) - 10

 Case 2

 If n(2) <> 20 Then ' "hundred"

 Beep

 Exit Sub

 End If

 myResult = n(1) * 100

 Case 3

 If n(2) <> 32 Then ' hyphen

 Beep

50

 Exit Sub

 End If

 myResult = 10 * (n(1) - 10) + n(3)

 Case 4

 If n(2) <> 20 Then ' "hundred"

 Beep

 Exit Sub

 End If

 myResult = n(4)

 If n(4) > 10 Then myResult = 10 * (n(4) - 10)

 If n(4) > 20 Then myResult = n(4) - 10

 myResult = myResult + 100 * n(1)

 Case 5

 If n(2) <> 20 Then ' "hundred"

 Beep

 Exit Sub

 End If

 myResult = 100 * n(1) + 10 * (n(3) - 10) + n(5)

 Case 6

 If n(2) <> 20 Then ' "hundred"

 Beep

 Exit Sub

 End If

 myResult = 100 * n(1) + 10 * (n(4) - 10) + n(6)

 Case Else

 Beep

 Exit Sub

End Select

Debug.Print myResult

rng.Delete

Selection.TypeText Text:=Trim(Str(myResult))

End Sub

In this code:
 rng.MoveEnd wdWord, numWords - 9

 rng.MoveEndWhile

cset:=" ",

Count:=wdBackward
 rng.Select

I can’t quite remember how/why the end of the range, rng, had to be moved forwards by numWords - 9 words

(i.e. backwards since numWords is less than 9), but I used the rng.Select for debugging, to make the range

visible, to make sure I’d got just the right words. (This numWords - 9 might even be an error, but I changed the

method later, so we won’t worry about it.)

I also used

51

 rng.MoveEndWhile cset:=" ",

Count:=wdBackward
to bring the selection (well, the range) back past the space.

Then we type the number in place of the range:
 rng.Delete

 Selection.TypeText Text:=Trim(Str(myResult))

Ah, but this only works of the rng is actually selected by rng.Select, because we’re using Selection to do the

typing, i.e. type at the current cursor position.

Make it more user friendly

So far, this only works if the cursor is in the first word of the text-based number, but what we want is to allow the user

to either put the cursor somewhere (anywhere) in the number or put the cursor anywhere to the left of the number. In

that way, you can convert one number, then run the macro a second time without bothering to move the cursor.

So we check the word at the cursor and, if it’s not a valid number-word then we extend the range right until we do find

a number-word – this then is the first word of the text-based number, and out conversion can proceed.

If, However, the first word i a number-word, we extend the range to the left until we overshoot and find a word that’s

not a number-word. Then extend the right-hand end of the range to the end of the text-based number.

Do

 rng.MoveEnd wdWord, 1

 Debug.Print rng.Text

 thisWord = Trim(rng.Words(rng.Words.Count))

 If InStr("and-", thisWord) > 0 Then thisWord = "x"

Loop Until InStr(allNumberWords, ":" & thisWord & ":") > 0

rng.Collapse wdCollapseEnd

rng.MoveEnd wdWord, -1

Debug.Print rng.Text

gotStart = False

Do While gotStart = False

 rng.MoveStart wdWord, -1

 Debug.Print rng.Text

 If InStr(allNumberWords, ":" & Trim(rng.Words(1)) & ":") = 0 Then

 gotStart = True

 rng.MoveStart wdWord, 1

 gotStart = True

 End If

 DoEvents

Loop

gotEnd = False

Do While gotEnd = False

 rng.MoveEnd wdWord, 1

 lastWord = Trim(rng.Words(rng.Words.Count))

 If InStr(allNumberWords, ":" & lastWord & ":") = 0 Then

 gotEnd = True

 rng.MoveEnd wdWord, -1

 End If

 Debug.Print rng.Text

 DoEvents

Loop

If Trim(rng.Words(1)) = "and" Then rng.MoveStart wdWord, 1

52

allWords = rng.Text

numWords = rng.Words.Count

So that first block (yellow) is:

Extend the range right by one word.
 rng.MoveEnd wdWord, 1

Show the range in Imm. mode,

 Debug.Print rng.Text

Pick up the final word of the range,
 thisWord = Trim(rng.Words(rng.Words.Count))

To expand on that, I could have done it by using:
 numWords = rng.Words.Count
 rng.Words(numWords)

But instead, I did it as a single line

If this word is ‘a’, ‘an’, ‘and’ or ‘-’ then it might be just part of the ordinary text, so change it to ‘x’, so that we ignore

it and check the following word.
 If InStr("and-", thisWord) > 0 Then thisWord = "x"

Keep going around this loop until we find a word that is in our list of number-words, allNumberWords.
 Loop Until InStr(allNumberWords, ":" & thisWord & ":") > 0

The unhighlighted section reduces the range to just the single number-word:
 rng.Collapse wdCollapseEnd

 rng.MoveEnd wdWord, -1

That next block (turquoise) is where we find the start of the text-based number (in case there was an ‘a’ for ‘a

hundred’):

gotStart = False We haven’t found the start yet.

Do While gotStart = False As long as we’re not there yet...

 rng.MoveStart wdWord, -1 ...extend the range left by one word

gotStart = False

Do While gotStart = False

If we haven’t found the start yet, extend the range one word left.
 rng.MoveStart wdWord, -1

 Debug.Print rng.Text

but if we find a word that’s not a number-word...
 If InStr(allNumberWords, ":" & Trim(rng.Words(1)) & ":") = 0 Then

we have found the start (in fact we’ve gone too far left), so...
 gotStart = True

move the start of the range one word to the right
 rng.MoveStart wdWord, 1

 gotStart = True

 End If

 DoEvents

Loop

The grey block extends the range, word by word, to the right, until it goes too far and includes a non-number-word,

and then pulls back by one word.

A word of warning about Do Loops

Especially when you’re developing a macro, you do have to be careful with Do Loops. If you can the condition for

ending the loop wrong, it will go into an infinite. Theoretically, you should be able to click Reset on the VBA toolbar.

53

Unfortunately, Do Loops seem to be very ‘tight’ such that it’s sometimes impossible to escape, and... you did

remember to save the macros before you did this trial run, didn’t you?

In my case, when I was developing this macro, no, I didn’t save it; VBA crashed, I had to restart it, and I lost the

prgramming I had done! All I needed to do was press Ctrl-S within VBA before running the macro, and all would

have been well.

The other precaution you can take is to add a DoEvents command into the loop. This means that every time through

the loop, VBA ‘puts it head up’ to see if anything is happening; this means it should notice that you’ve clicked Reset

(or clicked Ctrl-Break, if the cursor was in Word when you ran the macro).

A further warning about Do Loops

If, like me, you use loads of keystrokes to run your macros, it’s all too easy to initiate a macro when you didn’t intend

to. So, suppose you launched this macro in a text where there weren’t any number words; it will keep looking, and at

best you’ll have a long delay, but at worst Word will crash. For that reason, I decided to change the first Do Loop into

a For Next loop:

gottaWord = False

For i = 1 To 50

 rng.MoveEnd wdWord, 1

 Debug.Print rng.Text

 thisWord = Trim(rng.Words(rng.Words.Count))

 If InStr("aand-", thisWord) = 0 And InStr(allNumberWords, _

 ":" & thisWord & ":") > 0 Then

 If Right(Trim(rng.Text), 6) = "no-one" Then

 gottaWord = False

 Else

 gottaWord = True

 Exit For

 End If

 End If

Next i

rng.Collapse wdCollapseEnd

rng.MoveEnd wdWord, -1

If gottaWord = False Then

 rng.Select

 Beep

 myTime = Timer

 Do

 Loop Until Timer > myTime + 0.2

 Beep

 Exit Sub

End If

This is essentially the same as the yellow block two pages back, but it uses a For Next loop (currently set to 50), so it

doesn’t go on searching for ever if it can’t find a number-word. Instead, if it falls off the end of the loop, it does a

double-Beep (yellow block). If it does find a number-word, it exits the For-Next loop (turquoise).

The other item I’ve added (green) was because, while preparing the video, the word ‘no-one’ came in the text in

between one text-based number and the next, and it converted it to 216 or some such!

I haven’t explained some of the jiggery-pockery I used in the calculation section of the different numbers of words in

the text-based number. They relate to the US versions of text-based numbers, e.g. ‘three hundred forty-two’ (five

words) and ‘four hundred two’ (three words).

I also allowed for a missing hyphen, e.g. ‘forty two’ (two words). But for all other ‘odd’ situations, I just gave a beep

and exited the macro.

54

Your homework is to work through the calculation code and see which bit does what:

Select Case numWords

 Case 1

 myResult = n(1)

 If n(1) > 10 Then myResult = 10 * (n(1) - 10)

 If n(1) > 20 Then myResult = n(1) - 10

 Case 2

 If n(2) = 20 Then ' "hundred"

 myResult = n(1) * 100

 Else

 myResult = 10 * (n(1) - 10) + n(2)

 If myResult < 21 Then

 Beep

 rng.Select

 Exit Sub

 End If

 End If

 Case 3

 myResult = 10 * (n(1) - 10) + n(3)

 If n(2) <> 32 Then ' hyphen

 If n(2) = 20 Then

 myResult = n(3) + 100 * n(1)

 Else

 Beep

 rng.Select

 Exit Sub

 End If

 End If

 Case 4

 If n(2) <> 20 Then ' "hundred"

 Beep

 rng.Select

 Exit Sub

 End If

 myResult = n(4)

 If n(4) > 10 Then myResult = 10 * (n(4) - 10)

 If n(4) > 20 Then myResult = n(4) - 10

 myResult = myResult + 100 * n(1)

 Case 5

 If n(2) <> 20 Then ' "hundred"

 Beep

 rng.Select

 Exit Sub

 End If

 myResult = 100 * n(1) + 10 * (n(3) - 10) + n(5)

 Case 6

 If n(2) <> 20 Then ' "hundred"

 Beep

 rng.Select

 Exit Sub

 End If

 myResult = 100 * n(1) + 10 * (n(4) - 10) + n(6)

 Case Else

 Beep

 rng.Select

 Exit Sub

End Select

55

That’s it for now. I hope some of this was useful!

VBA tips and tricks to be written up

Find and replace in this paragraph only

Selection.Expand wdParagraph

With Selection.Find

 .ClearFormatting

 .Replacement.ClearFormatting

 .Text = "6"

 .Wrap = wdFindStop

 .Forward = True

 .Replacement.Text = "7"

 .MatchWildcards = True

 .Execute Replace:=wdReplaceAll

 DoEvents

End With

