
Hints and tips mine
This is just a random collection that I’ve made over the years (most recent at the top) of ‘useful stuff’: all sorts of

ideas, hints, web links, explanations etc. Much of it is macro code segments, but if you search the file for a

word/short phrase of interest, you might find something helpful. Hope it helps!

PB (21/12/22)

Sub TemplatesFolderAddress()

' Paul Beverley - Version 18.12.22

' Types the address of the current templates foler

full = NormalTemplate.FullName

nm = NormalTemplate.Name

Selection.InsertAfter Text:=Replace(full, nm, "")

Selection.Copy

WordBasic.EditUndo

End Sub

Finding the location (pathname) of the Normal template

Word 365 for Mac

Open any Word file. Run the below NTaddress macro.

Sub NTaddress()

' Version 26.06.20

' Locates your Normal template folder

Documents.Add

Selection.TypeText Text:=NormalTemplate.FullName

End Sub

This macro will create a new Word file containing the pathname for where the Normal template is located on your

computer. It should look something like this:

/Users/[YourName]/Library/Group Containers/UBF8T346G9.Office/User

Content.localized/Templates.localized/Normal.dotm

Now jump to the Displaying the location of the Normal template in Finder section below.

Somehow, my trust center settings decided to check the boxes that enabled

Protected View for

files originating from the Internet

located in potentially unsafe locations

for Outlook attachments (I don't even use Outlook).

I unchecked them and it solved the problem! Thanks to all who tried to help.

I found this site to be helpful

https://www.easeus.com/resource/word-experienced-an-error-trying-to-open-the-file.html#part1

' With ActiveWindow

' .Top = 0

' .Left = 1440

' .Width = 1400

' .Height = 800

' End With

"Application.Move Left:=1440, Top:=2" command is not available.

Does anyone have any tricks up their sleeve for a Mac running Monterey and up-to-date Word 365?

Thanks.

To which I add -- I found something that works, although it places the window about a thumb's width from the top

of the screen, for some reason. But it's definite progress, and quite usable. Hurray!

Here's the macro I came up with:

Sub FullScreen()

 With ActiveWindow

 .Top = 0

 .Left = 0

 .Width = 1400

 .Height = 800

 ActiveWindow.ActivePane.View.Zoom.PageFit = wdPageFitBestFit

End With

End Sub

Select the final actual line of text in the file!

Selection.EndKey Unit:=wdStory

' Select bottom line

Selection.MoveStart wdSentence, -1

Sub CycleWindows()

' Jumps through the windows, activating them one by one, each time you run it

 If Application.ActiveWindow.Index < Application.Windows.Count Then

 Application.Windows(Application.ActiveWindow.Index + 1).Activate

 Else

 Application.Windows(1).Activate

 End If

 Debug.Print "Current Window is.........: " & Application.ActiveWindow.Index

End Sub

Show all information about open windows on different documents:

Sub DocumentsAndWindows()

 Dim vDocument As Document

 Dim vWindow As Window

 Debug.Print "Number of Documents.......: " & Application.Documents.count

 For Each vDocument In Application.Documents

 Debug.Print " Document...............:" & vDocument.Name

 Next

 Debug.Print

 Debug.Print "Number of Windows.........: " & Application.Windows.count

 For Each vWindow In Application.Windows

 Debug.Print " Window.................: " & vWindow.Index & " - " & vWindow.Document.Name

 Next

 Debug.Print " Current Window.........: " & Application.ActiveWindow.WindowNumber

 Debug.Print

End Sub

Call Wait(3)

SendKeys "{TAB}"

SendKeys "{TAB}"

SendKeys "{TAB}"

SendKeys "{TAB}"

SendKeys "{TAB}"

SendKeys "{TAB}"

SendKeys "{TAB}"

SendKeys "{TAB}"

SendKeys "{TAB}"

SendKeys "^v"

SendKeys "{ENTER}"

Sub Wait(n As Long)

'from https://social.msdn.microsoft.com/Forums/en-US/08128481-8006-4f1d-935d-0a960b47aa74/wait-macro-in-

word-2010?forum=worddev

Dim t As Date

t = Now

Do

DoEvents

Loop Until Now >= DateAdd("s", n, t)

End Sub

Options.PasteSmartCutPaste = False

Options.SmartParaSelection = False

Options.SmartCursoring = False

Options.AutoWordSelection = False

Exit Sub

Options.AutoWordSelection = True

Options.SmartParaSelection = True

Options.SmartCursoring = True

Options.PasteSmartCutPaste = True

 Exit Sub

myOptWS = Options.AutoWordSelection

Options.AutoWordSelection = False

myOptCP = Options.PasteSmartCutPaste

Options.PasteSmartCutPaste = False

myOptSC = Options.SmartCursoring

Options.SmartCursoring = False

myOptPS = Options.SmartParaSelection

Options.SmartParaSelection = False

myOptWS = Options.AutoWordSelection

Options.AutoWordSelection = False

Options.AutoWordSelection = myOptWS

Options.PasteSmartCutPaste = myOptCP

Options.SmartCursoring = myOptSC

Options.SmartParaSelection = myOptPS

End Sub

Sub SmartOptsOff()

 Options.AutoWordSelection = False

Exit Sub

 Options.PasteSmartCutPaste = False

 Options.SmartParaSelection = False

 Options.SmartCursoring = False

 ActiveDocument.Range.ParagraphFormat.Alignment = wdAlignParagraphJustify

 ActiveDocument.Range.ParagraphFormat.Alignment = wdAlignParagraphJustifyHi

 ActiveDocument.Range.ParagraphFormat.Alignment = wdAlignParagraphJustifyMed

 ActiveDocument.Range.ParagraphFormat.Alignment = wdAlignParagraphJustifyLow

 ActiveDocument.Range.ParagraphFormat.Alignment = wdAlignParagraphDistribute

 ActiveDocument.Range.ParagraphFormat.Alignment = wdAlignParagraphThaiJustify

Dear Mr Beverley,

I came across your MS Word macros for proofreading last year, and I would like to thank you for putting such a

huge body of work in the public domain. Although I have been writing macros in Excel for about 20 years, I had

never written one in MS Word. The discovery of your macros inspired me to write my first MS Word macro a few

months ago.

I had always found it frustrating to have to manually format subscripts and superscripts in chemical formulae, i.e.

changing H2O to H2O. One scientific report that I reviewed recently contained over 600 chemical terms!

Therefore, I wrote a macro called ProofChem, which is a one-click macro for detecting and formatting all chemical

formulae in a manuscript. ProofChem can automatically recognise and format quite complex chemical terms, such

as:

· [Ag(S2O3)2]3- --> [Ag(S2O3)2]3-

· K342K[Fe(14CN)6] --> K342K[Fe(14CN)6]

Other tools I found on the internet required the user to choose and apply a format for each chemical term

individually, and often were not able to discern real chemical formulae from similar looking terms that should not

be formatted. I'm not a chemist, so on the advice of a colleague, I designed my macro to align where possible with

the conventions in the Nomenclature of Inorganic Chemistry published by IUPAC (https://iupac.org/what-we-

do/books/redbook). Chemical formulae can be quite obscure in specialist scientific articles, so the macro is not

infallible. Nevertheless, my chemist colleague told me that in his view it covered 95% of everyday terms used by a

normal chemist in, say, technical reports.

Although I wrote the macro on "company time", my employer has approved the distribution of the macro with an

open-source license, and the macro is now freely available on github. I think you mentioned in one of your videos

that your proofread many scientific manuscripts, so I thought you might find ProofChem useful and I just wanted to

draw your attention to it.

You can find a short video demo of the macro on YouTube: https://youtu.be/r5G0IRT8YlU, and the macro itself

can be downloaded from here: https://github.com/ec-jrc/jrc-proofreading

Thank you again for sharing your magnum opus of macros for the proofreading community, which I - and I'm sure

many others - found most useful and inspiring.

With very best wishes,

I am continuing "fine-tuning" the appearance of our Liturgical (worship) Books at the Monastery. The text is set

Aligned Left, Ragged Right; formatting which is the current usage in most Anglican Prayer Books. There was a

style of formatting used by a company named Cogent-Elliot, in which the text was set Aligned Left, but then

adjusted by expanding and condensing Letter and Inter-word spacing line by line or a paragraph at a time, to even

out the right edge.

I have several macros adapted from code I've collected over the years, such as:

Sub ExpandLetterSpacing()

 Dim LSpacing

 LSpacing = Selection.Font.Spacing

 Selection.Font.Spacing = LSpacing + 0.05

' How to limit adjustment to a maximum of 0.25 points?

End Sub

to adjust the text. We use Sabon MT set 16/18, and I have found that the text can be adjusted +/- .25 points, without

it becoming obvious that the text and or spaces have been adjusted. How can I modify the code to limit adjustment

to a maximum of +/- 0.25 points?

Word frequency program:

http://neon.niederlandistik.fu-berlin.de/textstat/

Sub MergeDocs()

 Dim rng As Range

 Dim MainDoc As Document

 Dim strFile As String

 Const strFolder = "P:\Doc files\New folder\New folder\" 'change to suit

 Set MainDoc = Documents.Add

 strFile = Dir$(strFolder & "*.doc") ' can change to .docx

 Do Until strFile = ""

 Set rng = MainDoc.Range

 rng.Collapse wdCollapseEnd

 rng.InsertFile strFolder & strFile

 strFile = Dir$()

 Loop

 MsgBox ("Files are merged")

End Sub

Sub SaveEachSectionAsADoc()

 Dim objDocAdded As Document

 Dim objDoc As Document

 Dim nSectionNum As Integer

 Dim strFolder As String

 Dim dlgFile As FileDialog

 ' Initialization

 Set objDoc = ActiveDocument

 Set dlgFile = Application.FileDialog(msoFileDialogFolderPicker)

 ' Pick a location to keep new files.

 With dlgFile

 If .Show = -1 Then

 strFolder = .SelectedItems(1) & "\"

 Else

 MsgBox "Select a folder first!"

 Exit Sub

 End If

 End With

 Debug.Print strFolder

 ' Step through each section in current document, copy and paste each to a new one.

 For nSectionNum = 1 To ActiveDocument.Sections.Count

 Selection.GoTo What:=wdGoToSection, Which:=wdGoToNext, Name:=nSectionNum

 ActiveDocument.Sections(nSectionNum).Range.Copy

 Set objDocAdded = Documents.Add

 Selection.Paste

 ' Save and close new documents.

 objDocAdded.SaveAs FileName:=strFolder & "Section " & nSectionNum & ".docx"

 objDocAdded.Close

 Next nSectionNum

End Sub

Select line, select page, select section

https://docs.microsoft.com/en-us/office/vba/word/concepts/miscellaneous/predefined-bookmarks

Sub whatever()

Selection.Bookmarks("\line").Range.Select

'Set myrange = Selection.Bookmarks("\section").Range

 Set rng = Selection.Bookmarks("\page").Range

 rng.Select

rng.Collapse wdCollapseStart

 Set rng2 = Selection.Bookmarks("\line").Range

rng2.Select

Could this help in nudging the display up, to get an extra line on screen?

For use with HighlightFindDown/Up

Sub SelectionToTop()

 Dim pLeft As Long

 Dim pTop As Long, loopTop As Long, windowTop As Long

 Dim pWidth As Long

 Dim pHeight As Long, windowHeight As Long

 Dim Direction As Integer

 windowHeight = PixelsToPoints(ActiveWindow.Height, True)

 ActiveWindow.GetPoint pLeft, windowTop, pWidth, pHeight, ActiveWindow

 ActiveWindow.GetPoint pLeft, pTop, pWidth, pHeight, Selection.Range

 'Direction, defines scroll direction -1 0 or 1

 Direction = Sgn((pTop + pHeight / 2) - (windowTop + pHeight))

 Do While Sgn((pTop + pHeight / 2) - (windowTop + pHeight)) = Direction And (loopTop <> pTop)

 ActiveWindow.SmallScroll Direction

 loopTop = pTop

 ActiveWindow.GetPoint pLeft, pTop, pWidth, pHeight, Selection.Range

 Loop

End Sub

Extracting Text to a new document

Public Sub PrayerCondense()

Dim P As Long

ActiveDocument.SaveAs2 "Prayer 2 Abridged"

P = 1

With ActiveDocument.Paragraphs

 While P <= .Count

 Select Case .Item(P).Style

 Case "Service Title", "Prayer 2 Title", "Prayer 2"

 'Do nothing

 P = P + 1

 Case Else

 .Item(P).Range.Delete

 End Select

 Wend

End With

End Sub

-----Original Message-----

Subject: Extracting Text to a new document

I hope this finds you all well. I am working on my Communities Worship materials. Each service has several

prayers, which for the sake of illustration I will refer to as Prayer 1 - Prayer 4. I would like to extract the following

texts, (which has the following styles applied to them) Service Title, Prayer 2 Title, Prayer 2 Body to a new

document. The original document is several hundred pages long.

What would be the best way to do this? A search? A find and replace? Some sort of an array?

Thank you for any assistance.

Brother Jeremy, CSJW

Mac things

 System.Cursor = wdCursorWait

 System.Cursor = wdCursorNormal

horz = System.HorizontalResolution

vert = System.VerticalResolution

Sub TestSystem()

' Version 27.12.20

' Test OS reporting

Documents.Add

Selection.TypeText "PCode = " & Application.ProductCode & vbCr

Selection.TypeText "Version = " & Application.Version & vbCr

Selection.TypeText "System OS = " & Application.System.OperatingSystem & vbCr

Selection.TypeText "System version = " & Application.System.Version & vbCr

Selection.TypeText "OS Mac = " & Application.System.MacintoshName & vbCr

Selection.TypeText "Horz res = " & System.HorizontalResolution & vbCr

Selection.TypeText "Vert res = " & System.VerticalResolution & vbCr

Options.SmartCutPaste = False

Options.SmartCutPaste = True

If you do the arithmetic, your coding requires F&R to be repeated mypairs x

4 times. In tests on my large file the time for each F&R varies from 1.6

seconds if there are 5 instances to 5.1 seconds if there are 890 instances.

Therefore if you have 1000 pairs and assuming an average search time of 2

seconds then the time taken will be 2.2 hours.

My previous macro CountHyphenWords gives a list of hyphenated words and a

word count but it does not count variations such as cowbell and cow bell,

using F&R for this would be time consuming. However, the macro produces an

array of all words in the document and scanning an array is much faster

than F&R. The macro has been expanded to CountHyphenWordsAndVariations and

gives the word counts including three variations. Tested on a 880,000 word

document the total time was 9 minutes for 4100 hyphenated words - 5 minutes

if restricted to 1000 hyphenated words.

A lot better than 2.2 hours.

Sub CountHyphenWordsAndVariations()

Dim wrd As Range

Dim a() As String

Dim b() As String

Dim c() As String

Dim w() As Long

Dim j As Long

Dim k As Long

Dim kk As Long

Dim n As Long

Dim s As String

Dim schWd As String

Dim ss As String

Dim ta As Single

ta = Timer

 ' *** create array a() of all words ****

 k = 0

 ReDim a(0)

 For Each wrd In ActiveDocument.Words

 k = k + 1

 ReDim Preserve a(k)

 a(k) = Trim(wrd.Text)

 Next wrd

 ' **** Create array b() of hyphenated words ****

 j = 0

 ReDim b(0)

 For k = 2 To UBound(a) - 1

 If a(k) = "-" Then

 s = Right(a(k - 1), 1)

 If s >= "A" And s <= "z" Then

 s = Left(a(k + 1), 1)

 If s >= "A" And s <= "z" Then

 j = j + 1

 ReDim Preserve b(j)

 b(j) = a(k - 1) & "-" & a(k + 1)

 End If

 End If

 End If

 Next k

 ' **** Sort array b() case sensitive ****

 For k = 1 To UBound(b) - 1

 For j = k + 1 To UBound(b)

 If b(k) > b(j) Then

 s = b(k)

 b(k) = b(j)

 b(j) = s

 End If

 Next j

 Next k

 ' **** unique hyphenated words in c(), count in w() ****

 k = 0

 s = ""

 ReDim w(0)

 ReDim c(0)

 For j = 1 To UBound(b)

 If b(j) <> s Then

 s = b(j)

 k = k + 1

 ReDim Preserve c(k)

 ReDim Preserve w(k)

 c(k) = b(j)

 w(k) = 1

 Else

 w(k) = w(k) + 1

 End If

 Next j

MsgBox "Phase 1" & Str(Timer - ta)

ta = Timer

 ' **** word count of hyphenated word variations ****

 ReDim x(UBound(c), 3)

 For k = 1 To UBound(c)

 ss = c(k)

 For j = 1 To 3

 Select Case j

 Case 1: schWd = Replace(ss, "-", "")

 Case 2: schWd = Replace(ss, "-", " ")

 Case 3: schWd = Replace(ss, "-", ChrW(8211))

 End Select

 n = 0

 For kk = 1 To UBound(a)

 If a(kk) = schWd Then n = n + 1

 Next kk

 x(k, j) = n

 Next j

 Next k

MsgBox "Phase 2" & Str(Timer - ta)

 ' **** display first 4 hyphernated words ****

 s = "Number of unique hyphenated words" & Str(UBound(c)) & vbCrLf

 For k = 1 To 4

 s = s & c(k) & Str(w(k)) & " no hyphen" & Str(x(k, 1)) & _

 " space" & Str(x(k, 2)) & " long hyphen" & Str(x(k, 3)) & vbCrLf

 Next k

 MsgBox s

End Sub

Subject: Re: VBA help, please

To: WORD-PC@liverpool.ac.uk

I think that the following satisfies your requirements, it results in two

arrays, a() contains a sorted list of unique hyphenated words and x()

contains counts of how many times each word appears in the document.

Separate entries are generated for lower case, title case and uppercase

variations of the words.

For my test document of 688,000 words it took 4 minutes to give the result

of 4166 unique words out of 14000 hyphenated words. I think that my method

is about as fast as you can get, some alternatives that I tried take over

an hour.

It would be straight forward to get counts of alternative words that have

the hyphen replaced by a space or deleted ("cow bell" and "cow bell") by

scanning down a() and using the function CountWords to determine the

number of times they appear in the document.

Sub CountHyphenWords()

Dim wrd As Range

Dim a() As String

Dim b() As String

Dim x() As Long

Dim j As Long

Dim k As Long

Dim s As String

 ' *** create array a() of all words ****

 k = 0

 ReDim a(0)

 For Each wrd In ActiveDocument.Words

 k = k + 1

 ReDim Preserve a(k)

 a(k) = Trim(wrd.Text)

 Next wrd

 ' **** Create array b() of hyphenated words ****

 j = 0

 ReDim b(0)

 For k = 2 To UBound(a) - 1

 If a(k) = "-" Then

 s = Right(a(k - 1), 1)

 If s >= "A" And s <= "z" Then

 s = Left(a(k + 1), 1)

 If s >= "A" And s <= "z" Then

 j = j + 1

 ReDim Preserve b(j)

 b(j) = a(k - 1) & "-" & a(k + 1)

 End If

 End If

 End If

 Next k

 ' **** Sort array b() case sensitive ****

 For k = 1 To UBound(b) - 1

 For j = k + 1 To UBound(b)

 If b(k) > b(j) Then

 s = b(k)

 b(k) = b(j)

 b(j) = s

 End If

 Next j

 Next k

 ' **** Word count, Re-use array a() ****

 k = 0

 s = ""

 ReDim a(0)

 ReDim x(0)

 For j = 1 To UBound(b)

 If b(j) <> s Then

 s = b(j)

 k = k + 1

 ReDim Preserve a(k)

 ReDim Preserve x(k)

 a(k) = b(j)

 x(k) = 1

 Else

 x(k) = x(k) + 1

 End If

 Next j

 MsgBox "Number of unique hyphenated words=" & UBound(a)

 ' **** The unique hyphenated words are in array a() and the wordcount is

in array x()

End Sub

Function CountWords(WordText As String) As Long

Dim aRange As Range

Dim n As Long

Dim atest As Boolean

 n = 0

 ActiveDocument.GoTo(What:=wdGoToBookmark, Name:="\StartOfDoc").Select

 Application.ScreenUpdating = False

 With Selection.Find

 .ClearFormatting

 .Text = WordText

 .MatchWholeWord = True

 .MatchCase = True

 Do Until Not .Execute

 n = n + 1

 Loop

 End With

 Application.ScreenUpdating = True

 CountWords = n

End Function

--

Hi Paul,

 I've been using Jacques's utility regularly, as I have two clients

that want different names in Tracked Changes. It works. Sometimes I have to

change a file security attribute before it'll work.

 It looks as though he's doing it using XML. That's the feeling I get

from the messages displayed during processing. Both the Tracked Changes and

Comments are handled.

 From a Google search:

<

https://docs.microsoft.com/en-us/office/open-xml/how-to-retrieve-comments-from-a-word-processing-document

>

Santhosh

 Set myrange = Selection.Bookmarks("\page").Range

 myrange.Select

 Set myrange = Selection.Bookmarks("\line").Range

figures = "dddddddddddg"

clip.SetText figures

clip.PutInClipboard

And here is the very useful list of enumerations.

https://docs.microsoft.com/en-us/office/vba/api/word(enumerations)

It's part of the Word documentation. Here:

https://docs.microsoft.com/en-us/office/vba/api/overview/Word/object-model

Built-in Dialog Box Argument Lists (Word)

See file: Dialogs.doc in this directory.

If you have a computer that doesn't have a Break key, and you suspect that the macro you want to run might need

stopping in the middle of its run, open the VBA window, and run the macro from there. Then you can use the pause

and/or stop icons (with icons like those on a DVD player).

Well, you don't need to actually *run* it from VBA, as long as the VBA window is accessible.

The other thing to try is to go into Visual Basic and do

Tools -- references

It *should* say something like:

Available References:

Visual Basic for Applications

Microsoft Word 16.0 Object Library (or 14.0 in earlier versions of Word)

OLE Automation

Microsoft Word 16.0 Object Library (or 14.0 in earlier versions of Word)

Microsoft Scripting Runtime

Microsoft Forms 2.0 Object Library

You'll probably be missing two:

Look down through the list of unticked items and see if you've got

"Microsoft Scripting Runtime" and "Microsoft Forms 2.0 Object Library".

Tick them, click OK, close VBA and then close and re-open Word.

Does that do the trick? (If not, try a complete restart of the computer.)

I've just tried to make my macros *not* work, by using

File - Options - Trust Centre - Trust Centre Settings

and setting it to "Disable all macros".

And all my macros still work.

Hello Paul

I've just been browsing through your latest version of 'The Book' and

noticed the *CharToMacron* provided by a fellow Kiwi.

For a while I made use of MS Word's Maori keyboard in order to insert

macrons but then I became aware of the 'Unicode Diacritics Macro for MS

Word' available from

https://collab.its.virginia.edu/wiki/toolbox/New%20Diacritics%20Word%20Macro.html

that enables the insertion of almost every kind of diacritic, and I've

found it very useful - not only for macrons but also common accents like

grave, acute, circumflex, diaeresis, etc. that I come across fairly

often. It might be 'overkill' for some people, depending on the range of

material they work with, but it's worth checking out.

Regards

Thiers

No worries. What has changed, I think, is not my macro but a setting on your computer: it has somehow set Option

Explicit to On.

See: https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/statements/option-explicit-statement

Basically 'proper' programmers declare ALL variables with Dim or ReDim, so for every single variable, I should

have a line saying, for example, Dim doFinalBeep as Boolean. I didn't know that for years, and I now have 600-odd

macros all of which have loads of variables, each of which should be Dim'med.

However, the compiler makes educated guesses about variable types and, where macros have actually needed

Dim's to make them work, the compiler has told me, and I've added the relevant Dim's.

So I'm afraid that if you want to use my macros, you'll need to turn the Option Explicit command to Off, as

explained in the web page quoted above.

In VBA, go to Tools -- Options -- Editor, and find "Require Variable

Declaration". Turn this option off, and that, I think, should do the trick.

Here is a macro that will recursively search through the specified

directory and all of its sub-directories. I have put tabs between the items

to make it easy to convert the resulting list to a table or drop into an

Excel spreadsheet. The list comes out in inverse order of sub-directories

but it can be sorted in Word or Excel.

Ah! the joys of recursive programming.

' ***** These declarations must be at the top of the module *****

Dim flNames() As String

Dim flCount As Long

' ***

Sub ScanSubFolders()

Dim FileSystem As Object

Dim mydir As String

Dim j As Long

 mydir = InputBox("Directory")

 flCount = 0

 ReDim flNames(0)

 Set FileSystem = CreateObject("Scripting.FileSystemObject")

 DoFolder FileSystem.GetFolder(mydir)

 Documents.Add

 Selection.TypeText "File name" & Chr(9) & "Folder" & Chr(9) & "Title" &

vbCrLf

 For j = 1 To flCount

 Selection.TypeText flNames(j)

 Next j

End Sub

Sub DoFolder(Folder)

Dim SubFolder

Dim aFile

Dim aRange As Range

Dim Flname As String

Dim nextdoc As Document

 For Each SubFolder In Folder.SubFolders

 DoFolder SubFolder

 Next SubFolder

 For Each aFile In Folder.Files

 Flname = aFile.Name

 If aFile.Name Like "*doc*" Then

 On Error GoTo nextFile ' Error can occur if file is already opened

by another application *****

 Set nextdoc = Documents.Open(FileName:=Folder & "\" & aFile.Name,

Visible:=False)

 Set aRange = Documents(nextdoc).Range

 With aRange.Find

 .ClearFormatting

 .Style = "Title"

 If .Execute Then

 flCount = flCount + 1

 ReDim Preserve flNames(flCount)

 flNames(flCount) = nextdoc & Chr(9) & Folder & Chr(9) &

aRange.Text

 End If

 End With

 nextdoc.Close SaveChanges:=wdDoNotSaveChanges

 End If

nextFile:

 On Error GoTo 0

 Next aFile

End Sub

--

I haven't got Word 2019 so I can only look at your problem in 2010 and 2016.

There is a bug in Record Macro that produces in response to CTRL + ALT +

PgUp the line

Selection.HomeKey Unit:=wdWindow

Only wdStory, wdColumn, wdLine and wdRow are valid units in this statement

(you have to hunt around to find this, Word's Help doesn't help). This bug

appears to be in all Word versions.

In Word 2010 and Word 2016 draft view, after PgUp and PgDn the display is

scrolled by the number of lines on the screen and the cursor is on the same

screen line in the new screen, which is what you are getting in 2019.

You will need to set the cursor to the top of the screen before PgUp or

PgDn.

wdFieldEmpty -1 Empty field. Acts as a placeholder for field content that has not yet been added. A field

added by pressing Ctrl+F9 in the user interface is an Empty field.

wdFieldRef 3 Ref field.

wdFieldIndexEntry 4 XE (Index Entry) field.

wdFieldFootnoteRef 5 FootnoteRef field. Not available through the Field dialog box. Inserted

programmatically or interactively.

wdFieldSet 6 Set field.

wdFieldIf 7 If field.

wdFieldIndex 8 Index field.

wdFieldTOCEntry 9 TOC (Table of Contents Entry) field.

wdFieldStyleRef 10 StyleRef field.

wdFieldRefDoc 11 RD (Reference Document) field.

wdFieldSequence 12 Seq (Sequence) field.

wdFieldTOC 13 TOC (Table of Contents) field.

wdFieldInfo 14 Info field.

wdFieldTitle 15 Title field.

wdFieldSubject 16 Subject field.

wdFieldAuthor 17 Author field.

wdFieldKeyWord 18 Keywords field.

wdFieldComments 19 Comments field.

wdFieldLastSavedBy 20 LastSavedBy field.

wdFieldCreateDate 21 CreateDate field.

wdFieldSaveDate 22 SaveDate field.

wdFieldPrintDate 23 PrintDate field.

wdFieldRevisionNum 24 RevNum field.

wdFieldEditTime 25 EditTime field.

wdFieldNumPages 26 NumPages field.

wdFieldNumWords 27 NumWords field.

wdFieldNumChars 28 NumChars field.

wdFieldFileName 29 FileName field.

wdFieldTemplate 30 Template field.

wdFieldDate 31 Date field.

wdFieldTime 32 Time field.

wdFieldPage 33 Page field.

wdFieldExpression 34 = (Formula) field.

wdFieldQuote 35 Quote field.

wdFieldInclude 36 Include field. Cannot be added through the Field dialog box, but can be added interactively

or through code.

wdFieldPageRef 37 PageRef field.

wdFieldAsk 38 Ask field.

wdFieldFillIn 39 Fill-In field.

wdFieldData 40 Data field.

wdFieldNext 41 Next field.

wdFieldNextIf 42 NextIf field.

wdFieldSkipIf 43 SkipIf field.

wdFieldMergeRec 44 MergeRec field.

wdFieldDDE 45 DDE field. No longer available through the Field dialog box, but supported for documents

created in earlier versions of Word.

wdFieldDDEAuto 46 DDEAuto field. No longer available through the Field dialog box, but supported

for documents created in earlier versions of Word.

wdFieldGlossary 47 Glossary field. No longer supported in Word.

wdFieldPrint 48 Print field.

wdFieldFormula 49 EQ (Equation) field.

wdFieldGoToButton 50 GoToButton field.

wdFieldMacroButton 51 MacroButton field.

wdFieldAutoNumOutline 52 AutoNumOut field.

wdFieldAutoNumLegal 53 AutoNumLgl field.

wdFieldAutoNum 54 AutoNum field.

wdFieldImport 55 Import field. Cannot be added through the Field dialog box, but can be added interactively

or through code.

wdFieldLink 56 Link field.

wdFieldSymbol 57 Symbol field.

wdFieldEmbed 58 Embedded field.

wdFieldMergeField 59 MergeField field.

wdFieldUserName 60 UserName field.

wdFieldUserInitials 61 UserInitials field.

wdFieldUserAddress 62 UserAddress field.

wdFieldBarCode 63 BarCode field.

wdFieldDocVariable 64 DocVariable field.

wdFieldSection 65 Section field.

wdFieldSectionPages 66 SectionPages field.

wdFieldIncludePicture 67 IncludePicture field.

wdFieldIncludeText 68 IncludeText field.

wdFieldFileSize 69 FileSize field.

wdFieldFormTextInput 70 FormText field.

wdFieldFormCheckBox 71 FormCheckBox field.

wdFieldNoteRef 72 NoteRef field.

wdFieldTOA 73 TOA (Table of Authorities) field.

wdFieldTOAEntry 74 TOA (Table of Authorities Entry) field.

wdFieldMergeSeq 75 MergeSeq field.

wdFieldPrivate 77 Private field.

wdFieldDatabase 78 Database field.

wdFieldAutoText 79 AutoText field.

wdFieldCompare 80 Compare field.

wdFieldAddin 81 Add-in field. Not available through the Field dialog box. Used to store data that is hidden

from the user interface.

wdFieldSubscriber 82 Macintosh only. For information about this constant, consult the language

reference Help included with Microsoft Office Macintosh Edition.

wdFieldFormDropDown 83 FormDropDown field.

wdFieldAdvance 84 Advance field.

wdFieldDocProperty 85 DocProperty field.

wdFieldOCX 87 OCX field. Cannot be added through the Field dialog box, but can be added through code

by using the AddOLEControl method of the Shapes collection or of the InlineShapes collection.

wdFieldHyperlink 88 Hyperlink field.

wdFieldAutoTextList 89 AutoTextList field.

wdFieldListNum 90 ListNum field.

wdFieldHTMLActiveX 91 HTMLActiveX field. Not currently supported.

wdFieldBidiOutline 92 BidiOutline field.

wdFieldAddressBlock 93 AddressBlock field.

wdFieldGreetingLine 94 GreetingLine field.

wdFieldShape 95 Shape field. Automatically created for any drawn picture.

wdFieldCitation 96 Citation field.

wdFieldBibliography 97 Bibliography field.

wdFieldMergeBarcode 98 MergeBarcode field.

wdFieldDisplayBarcode 99 DisplayBarcode field.

Name Value Description

Name Value Description

wdFieldAddin 81 Add-in field. Not available through the Field dialog box. Used to store data that is hidden

from the user interface.

wdFieldAddressBlock 93 AddressBlock field.

wdFieldAdvance 84 Advance field.

wdFieldAsk 38 Ask field.

wdFieldAuthor 17 Author field.

wdFieldAutoNum 54 AutoNum field.

wdFieldAutoNumLegal 53 AutoNumLgl field.

wdFieldAutoNumOutline 52 AutoNumOut field.

wdFieldAutoText 79 AutoText field.

wdFieldAutoTextList 89 AutoTextList field.

wdFieldBarCode 63 BarCode field.

wdFieldBidiOutline 92 BidiOutline field.

wdFieldComments 19 Comments field.

wdFieldCompare 80 Compare field.

wdFieldCreateDate 21 CreateDate field.

wdFieldData 40 Data field.

wdFieldDatabase 78 Database field.

wdFieldDate 31 Date field.

wdFieldDDE 45 DDE field. No longer available through the Field dialog box, but supported for documents

created in earlier versions of Word.

wdFieldDDEAuto 46 DDEAuto field. No longer available through the Field dialog box, but supported

for documents created in earlier versions of Word.

wdFieldDisplayBarcode 99 DisplayBarcode field.

wdFieldDocProperty 85 DocProperty field.

wdFieldDocVariable 64 DocVariable field.

wdFieldEditTime 25 EditTime field.

wdFieldEmbed 58 Embedded field.

wdFieldEmpty -1 Empty field. Acts as a placeholder for field content that has not yet been added. A field

added by pressing Ctrl+F9 in the user interface is an Empty field.

wdFieldExpression 34 = (Formula) field.

wdFieldFileName 29 FileName field.

wdFieldFileSize 69 FileSize field.

wdFieldFillIn 39 Fill-In field.

wdFieldFootnoteRef 5 FootnoteRef field. Not available through the Field dialog box. Inserted

programmatically or interactively.

wdFieldFormCheckBox 71 FormCheckBox field.

wdFieldFormDropDown 83 FormDropDown field.

wdFieldFormTextInput 70 FormText field.

wdFieldFormula 49 EQ (Equation) field.

wdFieldGlossary 47 Glossary field. No longer supported in Word.

wdFieldGoToButton 50 GoToButton field.

wdFieldGreetingLine 94 GreetingLine field.

wdFieldHTMLActiveX 91 HTMLActiveX field. Not currently supported.

wdFieldHyperlink 88 Hyperlink field.

wdFieldIf 7 If field.

wdFieldImport 55 Import field. Cannot be added through the Field dialog box, but can be added interactively

or through code.

wdFieldInclude 36 Include field. Cannot be added through the Field dialog box, but can be added interactively

or through code.

wdFieldIncludePicture 67 IncludePicture field.

wdFieldIncludeText 68 IncludeText field.

wdFieldIndex 8 Index field.

wdFieldIndexEntry 4 XE (Index Entry) field.

wdFieldInfo 14 Info field.

wdFieldKeyWord 18 Keywords field.

wdFieldLastSavedBy 20 LastSavedBy field.

wdFieldLink 56 Link field.

wdFieldListNum 90 ListNum field.

wdFieldMacroButton 51 MacroButton field.

wdFieldMergeBarcode 98 MergeBarcode field.

wdFieldMergeField 59 MergeField field.

wdFieldMergeRec 44 MergeRec field.

wdFieldMergeSeq 75 MergeSeq field.

wdFieldNext 41 Next field.

wdFieldNextIf 42 NextIf field.

wdFieldNoteRef 72 NoteRef field.

wdFieldNumChars 28 NumChars field.

wdFieldNumPages 26 NumPages field.

wdFieldNumWords 27 NumWords field.

wdFieldOCX 87 OCX field. Cannot be added through the Field dialog box, but can be added through code

by using the AddOLEControl method of the Shapes collection or of the InlineShapes collection.

wdFieldPage 33 Page field.

wdFieldPageRef 37 PageRef field.

wdFieldPrint 48 Print field.

wdFieldPrintDate 23 PrintDate field.

wdFieldPrivate 77 Private field.

wdFieldQuote 35 Quote field.

wdFieldRef 3 Ref field.

wdFieldRefDoc 11 RD (Reference Document) field.

wdFieldRevisionNum 24 RevNum field.

wdFieldSaveDate 22 SaveDate field.

wdFieldSection 65 Section field.

wdFieldSectionPages 66 SectionPages field.

wdFieldSequence 12 Seq (Sequence) field.

wdFieldSet 6 Set field.

wdFieldShape 95 Shape field. Automatically created for any drawn picture.

wdFieldSkipIf 43 SkipIf field.

wdFieldStyleRef 10 StyleRef field.

wdFieldSubject 16 Subject field.

wdFieldSubscriber 82 Macintosh only. For information about this constant, consult the language

reference Help included with Microsoft Office Macintosh Edition.

wdFieldSymbol 57 Symbol field.

wdFieldTemplate 30 Template field.

wdFieldTime 32 Time field.

wdFieldTitle 15 Title field.

wdFieldTOA 73 TOA (Table of Authorities) field.

wdFieldTOAEntry 74 TOA (Table of Authorities Entry) field.

wdFieldTOC 13 TOC (Table of Contents) field.

wdFieldTOCEntry 9 TOC (Table of Contents Entry) field.

wdFieldUserAddress 62 UserAddress field.

wdFieldUserInitials 61 UserInitials field.

wdFieldUserName 60 UserName field.

wdFieldBibliography 97 Bibliography field.

wdFieldCitation 96 Citation field.

=lorem()

or

=lorem(6,8) (or whatever)

Also

=rand()

or

=rand(3,7)

Open files at specific places and sizes

Macro 1, open new file in middle of screen, with specific distance from the edge of the screen.

Sub OpenInMiddleScreen

Dialogs(wdDialogFileOpen).Show

scnHeight = Application.UsableHeight

scnWidth = Application.UsableWidth

mySideMargin = 100

myTopMargin = 50

' ActiveDocument.ActiveWindow.WindowState = wdWindowStateNormal

Application.Move Left:=mySideMargin, Top:=myTopMargin

wdth = scnWidth - 2 * mySideMargin

ht = scnHeight - 2 * myTopMargin

Application.Resize Width:=wdth, Height:=ht

End Sub

Macro 2, open each new file same size, but further down and right. For this, you need to read the parameters of the

current window and open the new file

Sub OpenDownAndRight()

myJump = 50

nowWdth = Application.Width

nowHt = Application.Height

nowLeft = Application.Left

nowTop = Application.Top

Dialogs(wdDialogFileOpen).Show

newLeft = nowLeft + myJump

newTop = nowTop + myJump

Application.Move Left:=newLeft, Top:=newTop

scnHeight = Application.UsableHeight

scnWidth = Application.UsableWidth

wdth = nowWdth

rtMargin = scnWidth - newLeft - wdth

If rtMargin < 0 Then wdth = wdth + rtMargin

ht = nowHt

btmMargin = scnHeight - newTop - ht

If btmMargin < 0 Then ht = ht + btmMargin

Application.Resize Width:=wdth, Height:=ht

End Sub

scrollPosition = ActiveWindow.ActivePane.VerticalPercentScrolled (capture

the scroll position)

[things happen, the scroll moves]

ActiveWindow.ActivePane.VerticalPercentScrolled = scrollPosition (go back

to original position)

Track change viewing

Application.ScreenUpdating = False

Dim myView As Object

Set myView = ActiveWindow.View.MarkupMode r RevisionsFilter

If ActiveDocument.Revisions.Count > 0 Then

 If myView.Markup = wdRevisionsMarkupAll Then

 myView.Markup = wdRevisionsMarkupNone

 ElseIf myView.Markup = wdRevisionsMarkupNone Then

 myView.Markup = wdRevisionsMarkupAll

 End If

 ActiveWindow.ScrollIntoView Selection.range, True 'This keeps the cursor in view

E

MsoShapeType Enumeration

06/14/2014

2 minutes to read

Office Developer Reference

Specifies the type of a shape or range of shapes.

Name Value Description

msoAutoShape 1 AutoShape.

msoCallout 2 Callout.

msoCanvas 20 Canvas.

msoChart 3 Chart.

msoComment 4 Comment.

msoDiagram 21 Diagram.

msoEmbeddedOLEObject 7 Embedded OLE object.

msoFormControl 8 Form control.

msoFreeform 5 Freeform.

msoGroup 6 Group.

msoIgxGraphic 24 SmartArt graphic

msoInk 22 Ink

msoInkComment 23 Ink comment

msoLine 9 Line

msoLinkedOLEObject 10 Linked OLE object

msoLinkedPicture 11 Linked picture

msoMedia 16 Media

msoOLEControlObject 12 OLE control object

msoPicture 13 Picture

msoPlaceholder 14 Placeholder

msoScriptAnchor 18 Script anchor

msoShapeTypeMixed -2 Mixed shape type

msoTable 19 Table

msoTextBox 17 Text box

msoTextEffect 15 Text effect

Please would you try following the instructions in the following link?

https://superuser.com/questions/988756/how-can-you-change-mac-excel-2011-to-separate-using-commas-not-

semicolons

Thanks.

(I've checked my macros, and there are 174 occurrences of a comma that I'd

have to change to a semicolon.)

Sub SymbolsInFunnyFonts()

' Doesn't work at all!

' Version 25.01.17

' Find something specific and do things to each one

myFont = "Calibri"

Set rng = ActiveDocument.Content

With rng.Find

 .ClearFormatting

 .Replacement.ClearFormatting

 .Text = ""

 .Font.Name = myFont

 .Wrap = wdFindStop

 .Replacement.Text = ""

 .Forward = True

 .MatchWildcards = False

 .Execute

End With

myCount = 0

Do While rng.Find.Found = True

' If you want to count them...

 myCount = myCount + 1

' Note where the end of the found item is

 endNow = rng.End

 rng.Select

 Selection.Collapse wdCollapseStart

 Selection.TypeText Text:=rng.Text

 ' Be sure you're past the previous occurrence

 Set rng = ActiveDocument.range(endNow, endNow)

' Go and find the next occurrence (if there is one)

 rng.Find.Execute

Loop

MsgBox "Changed: " & myCount

End Sub

Sub WINorMAC()

'Test the OperatingSystem

'MsgBox (Application.Version)

'MsgBox (Application.System.MacintoshName)

Selection.TypeText Text:=Application.ProductCode & vbCr

Selection.TypeText Text:=Application.Version & vbCr

Selection.TypeText Text:=Application.OperatingSystem & vbCr

Selection.TypeText Application.System.MacintoshName & vbCr

xvgd = 0

' blah = Application.System.MacintoshName

 ' If Not Application.OperatingSystem Like "*Mac*" Then

 'i am Windows

End Sub

Sub CommentPassiveVoice()

' Version 14.04.16

'A basic Word macro coded by Greg Maxey

Dim oGR As range

 For Each oGR In ActiveDocument.GrammaticalErrors

 oGR.GrammarChecked = 1

 ActiveDocument.Comments.Add oGR, "Passive Voice"

 oGR.Select

 Next

End Sub

Sub GrammarErrorNext()

 hereNow = Selection.End

 Selection.Expand wdParagraph

 Selection.Start = hereNow

 If Selection.range.GrammaticalErrors.Count > 0 Then

 Selection.range.GrammaticalErrors(1).Select

 MsgBox Selection.range.GrammaticalErrors.Type

 End If

End Sub

Sub NavigationPane()

 ActiveWindow.DocumentMap = True

 CommandBars("Navigation").Visible = True

End Sub

This won't get you from where you are to where you might like to be, but

it's a nice simple tutorial I've found on writing macros and saving them

straight into another template, with key binding. It has also taught me a

bit more than I knew before. :-)

https://msdn.microsoft.com/en-us/library/office/ff604039(v=office.14).aspx

On error

https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/statements/on-error-statement

> I've tried this out now. I'm still in Word 2010, so this may be different if

> you've moved on.

> Briefly, when macros are saved in a different template to the Normal

> template, the key assignments they have are saved with them in that

> template. You need to be very well organised, however, which I'm not. In

> theory, all my macros are saved in a template called, imaginatively,

> mymacros.dotm. I make that available as a global template.

> Forgive egg-sucking lessons - I'm not sure whether you need this, but will

> say it now to save toing and froing. On the Developer tab (assuming you have

> that showing - if not go into File/Options/Customize Ribbon), click Document

> Template, then go to the lower window and click Add.. Browse to the folder

> with the templates in and choose, for instance, mymacros.dotm. This will

> then be listed in the window and you can check the box to load it. I think I

> remember that you can skip that step and have it available in all documents

> by putting it in the Word Startup folder, but I would have to research that

> again.

> The snag is that you can only edit the VBA file or save new macros in the

> separate template by opening the template file, and when you're in the

> middle of doing a job that feels like too much hassle, so I end up with some

> saved in Normal as well, and sometimes I've used the same key assignment for

> different things in the different templates. Word recognises them in a

> certain order - I think I may have sent you this way back.

> <http://wordribbon.tips.net/T011940_Finding_Default_Shortcut_Keys.html?awt_l

> =Ml_bR

> <http://wordribbon.tips.net/T011940_Finding_Default_Shortcut_Keys.html?awt_l

> =Ml_bR&awt_m=IpmhFje87wn74X> &awt_m=IpmhFje87wn74X>

>

> Fortunately I don't have a lot of these to sort out, so it won't take long,

> and it will be good discipline to sort out the key assignments. I hope that

> information helps you a bit, though.

Print as pdf

fjlskdflkdjs = ActivePrinter

 ActivePrinter = "Microsoft Print to PDF"

 Application.PrintOut FileName:="", Range:=wdPrintAllDocument, Item:= _

 wdPrintDocumentWithMarkup, Copies:=1, Pages:="", PageType:= _

 wdPrintAllPages, Collate:=True, Background:=True, PrintToFile:=False, _

 PrintZoomColumn:=0, PrintZoomRow:=0, PrintZoomPaperWidth:=0, _

 PrintZoomPaperHeight:=0

 ActivePrinter = "Canon MX490 series"

insertions and deletions.

insDels = ActiveWindow.View.ShowInsertionsAndDeletions

shwFormat = ActiveWindow.View.ShowFormatting

etc = ActiveWindow.View.ShowInkAnnotations

ActiveWindow.View.ShowInsertionsAndDeletions

ActiveWindow.View.ShowComments

Just to explain what @ does/doesn't do...

{1,} says "any quantity from 1 to infinity of the previous character"

whereas

@ says "any quantity from 1 to infinity of the previous character"

See the difference? No? OK then try this explanation.

{1,} is what I call "conscientious", while @ is "lazy".

If you've got, say, [0-9]@ in the *middle* of a Find, it's exactly the

same, but if @ is used at the beginning or end of a Find, it works

differently. So, some examples...

Text: "The box has area 146 x 120 cm"

Find1: area [0-9]@ x [0-9]@ cm will find "area 146 x 120 cm"

Find2: area [0-9]{1,} x [0-9]{1,} cm will find "area 146 x 120 cm" (exactly the same)

However...

Find3: [0-9]{1,} x [0-9]{1,} will find "146 x 120" (as many digits as possible)

Find4: [0-9]@ x [0-9]@ will find "6 x 1" (as few digits as possible)

Does that help? It's not an easy concept to explain.

If you watch this video, it'll help you "play with" wildcard F&Rs. That's

the best way to learn - to do it!

Developing wildcard searches (2:09)

Speed up the process of fault-finding a wildcard search

https://youtu.be/8UCbmiiDq-c

Sub CreateNewFile()

Dim storyRange As Range

Dim oldFileName As String

 oldFileName = ActiveDocument.Name

 ActiveDocument.SaveAs "newfilename.docx"

 For Each storyRange In ActiveDocument.StoryRanges

 storyRange.Delete

 Next storyRange

 Documents.Open FileName:=oldFileName

End Sub

It is useful to also show the creation date:

 s = "Created in Word" & wrdVer(versionNo) & _

 " " & ActiveDocument.BuiltInDocumentProperties("Creation

date").Value

Ken Endacott

Hello all

Here is a macro that I use to give some idea of the history of a document.

It gives the Word version in which the document was created.

Sub CreationVersion()

Dim versionNo As Long

Dim wrdNo As Long

Dim s As String

Dim wrdVer()

 wrdVer = Array("< 2002", "2002", "2003", "2007", "2008", "2010", "2013",

"2016", "????")

 versionNo = 8

 On Error Resume Next ' versions below 2010 do not have

compatibilityMode

 versionNo = ActiveDocument.CompatibilityMode - 9

 On Error GoTo 0

 wrdNo = Int(Val(Application.Version)) - 9

 If wrdNo < 0 Or wrdNo > 8 Then wrdNo = 0

 s = "Created in Word" & wrdVer(versionNo)

 If wrdNo <> versionNo Then s = s & vbCrLf & "Will be edited in

compatibility mode"

 MsgBox s

End Sub

Sub temp1()

 With Application.Dialogs(wdDialogStyleManagement)

 SendKeys "%OCalibri%Z11%L1 cm{ENTER}"

 .Show

 End With

End Sub

Hidden text

If Selection.Start = Selection.End Then

 doAll = True

 Set rng = ActiveDocument.Content

Else

 doAll = False

 Set rng = Selection.range.Duplicate

End If

myTrack = ActiveDocument.TrackRevisions

ActiveDocument.TrackRevisions = False

Application.ScreenUpdating = False

If rng.Words(1).Font.Hidden = True Then

 hideText = False

Else

 hideText = True

End If

If doAll = True Then

 For Each par In rng.Paragraphs

 par.range.Font.Hidden = hideText

 Next par

Else

 For Each wd In rng.Words

 wd.Font.Hidden = hideText

 Next wd

End If

ActiveDocument.TrackRevisions = myTrack

Application.ScreenUpdating = True

Beep

Exit Sub

Sub gohari_comment()

'

' gohari_comment Macro

'

'

 Selection.Comments.Add range:=Selection.range

End Sub

Sub gohari_query()

'

' gohari_query Macro

'

'

Set rng = Selection.range.Duplicate

Application.Run MacroName:="gohari_comment"

Selection.TypeText Text:="??"

ActiveWindow.ActivePane.Close

rng.Select

Selection.Collapse wdCollapseEnd

End Sub

I hope this message finds you well. As you might recall, I had a question a

few weeks ago about using macros with track changes and the big problem

this entails--namely that VBA can't ignore deleted text, which often

triggers an error. Well, I think I've found a solution, and I thought I'd

share it, in case it's helpful to you or anyone you work with. The

following macro solves the problem by producing a copy of the document,

running whichever macros the editor wants on the copy, and then performing

a "compare documents" between the copy and the original. The result is

exactly as if track changes had been turned on during the editing macros.

It's a pretty simple solution, and so far it works nicely for me.

Best,

Pablo

Sub TrackedEdits()

Application.ScreenUpdating = False

Dim Doc1 As Document, _

Doc2 As Document, Doc1Name As String, _

Doc2Name As String

Set Doc1 = ActiveDocument

Doc1Name = Doc1.Name

Set Doc2 = Documents.Add(YOUR TEMPLATE PATH HERE)

Doc2Name = Doc2.Name

Doc2.Range.FormattedText = Doc1.Range.FormattedText

'Call your editing macros here

'For some reason, Doc2 needs to be reactivated with each macro listed

'Otherwise, it sometimes reverts to working on Doc1

Doc2.Activate

'First macro

Doc2.Activate

'Second macro

Doc2.Activate

'etc.

Application.CompareDocuments _

OriginalDocument:=Documents(Doc1Name), _

RevisedDocument:=Documents(Doc2Name), _

Destination:=wdCompareDestinationRevised, _

Granularity:=wdGranularityWordLevel, _

CompareFormatting:=False, _

CompareCaseChanges:=True, _

CompareWhitespace:=True

Application.ScreenUpdating = True

End Sub

KeysBoundTo Property

Returns a KeysBoundTo object that represents all the key combinations assigned to the specified item.

expression.KeysBoundTo(KeyCategory, Command, CommandParameter)

expression Optional. An expression that returns one of the objects in the Applies To list.

WdKeyCategory

WdKeyCategory can be one of these WdKeyCategory constants.

wdKeyCategoryAutoText

wdKeyCategoryCommand

wdKeyCategoryDisable

wdKeyCategoryFont

wdKeyCategoryMacro

wdKeyCategoryNil

wdKeyCategoryPrefix

wdKeyCategoryStyle

wdKeyCategorySymbol

Command Required String. The name of the command.

CommandParameter Optional Variant. Additional text, if any, required for the command specified by Command.

For more information, see the "Remarks" section in the Add method for the KeyBindings object.

Example

This example displays all the key combinations assigned to the FileOpen command in the template attached to the

active document.

Dim kbLoop As KeyBinding

Dim strOutput As String

CustomizationContext = ActiveDocument.AttachedTemplate

For Each kbLoop In _

 KeysBoundTo(KeyCategory:=wdKeyCategoryCommand, _

 Command:="FileOpen")

 strOutput = strOutput & kbLoop.KeyString & vbCr

Next kbLoop

MsgBox strOutput

This example removes all key assignments from Macro1 in the Normal template.

Dim aKey As KeyBinding

CustomizationContext = NormalTemplate

For Each aKey In _

 KeysBoundTo(KeyCategory:=wdKeyCategoryMacro, _

 Command:="Macro1")

 aKey.Disable

Next aKey

Microsoft Office Word sets and automatically updates a number of reserved

bookmarks. You can use these predefined bookmarks just as you use bookmarks

that you place in documents, except that you do not have to set them and

they are not listed on the Go To tab in the Find and Replace dialog box.

You can use predefined bookmarks with the Bookmarks property. The following

example sets the bookmark named "currpara" to the location marked by the

predefined bookmark named "\Para".

ActiveDocument.Bookmarks("\Para").Copy "currpara"

The following table describes the predefined bookmarks available in Word.

Bookmark Description

\Sel Current selection or the insertion point.

\PrevSel1 Most recent selection where editing occurred; going to this

bookmark is equivalent to running the GoBack method once.

\PrevSel2 Second most recent selection where editing occurred; going

to this bookmark is equivalent to running the GoBack method twice.

\StartOfSel Start of the current selection.

\EndOfSel End of the current selection.

\Line Current line or the first line of the current selection. If the

insertion point is at the end of a line that is not the last line in the

paragraph, the bookmark includes the entire next line.

\Char Current character, which is the character following the insertion

point if there is no selection, or the first character of the selection.

\Para Current paragraph, which is the paragraph containing the insertion

point or, if more than one paragraph is selected, the first paragraph of

the selection. Note that if the insertion point or selection is in the last

paragraph of the document, the "\Para" bookmark does not include the

paragraph mark.

\Section Current section, including the break at the end of the

section, if any. The current section contains the insertion point or

selection. If the selection contains more than one section, the "\Section"

bookmark is the first section in the selection.

\Doc Entire contents of the active document, with the exception of the

final paragraph mark.

\Page Current page, including the break at the end of the page, if any.

The current page contains the insertion point. If the current selection

contains more than one page, the "\Page" bookmark is the first page of the

selection. Note that if the insertion point or selection is in the last

page of the document, the "\Page" bookmark does not include the final

paragraph mark.

\StartOfDoc Beginning of the document.

\EndOfDoc End of the document.

\Cell Current cell in a table, which is the cell containing the insertion

point. If one or more cells of a table are included in the current

selection, the "\Cell" bookmark is the first cell in the selection.

\Table Current table, which is the table containing the insertion point or

selection. If the selection includes more than one table, the "\Table"

bookmark is the entire first table of the selection, even if the entire

table is not selected.

\HeadingLevel The heading that contains the insertion point or selection,

plus any subordinate headings and text. If the current selection is body

text, the "\HeadingLevel" bookmark includes the preceding heading, plus any

headings and text subordinate to that heading.

https://docs.microsoft.com/en-us/dotnet/visual-basic/language-reference/operators/like-operator

Make Word wait...

 Word suspends execution of this statement until the document is fully

loaded hence the following statements operate on the whole document.

 Set rng = ActiveDocument.GoTo(What:=wdGoToBookmark, Name:="\StartOfDoc")

Delay loading a file

use a bookmark for end of document.

I have seen a similar situation when a VBA statement was executed before

the document was fully loaded.

Set rng = ActiveDocument.Content

may give only give part of the document. To test, step through statement by

statement using F8 pausing for a couple of seconds before the above

statement. If this gives a different result to executing the macro with F5

then you have the loading problem.

The solution is to place the following statement after the document

activation statement:

Set rng = ActiveDocument.GoTo(What:=wdGoToBookmark, Name:="\EndOfDoc")

Word suspends execution of this statement until the document is fully

loaded hence the following statements operate on the whole document.

Gary Smith Forum regular

Re: Automation of references - (macros?)

20 May 2017 at 10:42 Posts: 82

This should italicise book and journal titles (I'd do a test on a copy):

Sub ContControlFormat()

Dim AllControls As Long

AllControls = ActiveDocument.ContentControls.Count

x = 1

While x < AllControls

ActiveDocument.ContentControls.Item(x).Range.Select

If ActiveDocument.ContentControls.Item(x).Tag = "book-title" Then

Selection.Font.Italic = True

ElseIf ActiveDocument.ContentControls.Item(x).Tag = "journal-title" Then

Selection.Font.Italic = True

End If

x = x + 1

Wend

End Sub

I think moving the content around is probably possible where it's in blocks, but complex. For moving items within

blocks (e.g. inverting names) I'd probably use a character style or highlight to isolate the text, then use a wildcard

on just that character style to invert the text.

Edited 1 time(s). Last edit at 20/05/2017 at 10:44 by Gary Smith.

Axxxx Bxxxx Cxxxx Dxxxx Exxxx Fxxxx Gxxxx Hxxxx Ixxxx Jxxxx Kxxxx Lxxxx

Mxxxx Nxxxx Oxxxx Pxxxx Qxxxx Rxxxx Sxxxx Txxxx Uxxxx Vxxxx Wxxxx Xxxxx

Yxxxx Zxxxx Äxxxx

The VBA jargon term for the named values for constants is "enumeration".

This page: https://msdn.microsoft.com/en-us/library/office/dn353221.aspx

Lists enumerations for everything in Word 2013 and above.

This one for Word 2010: https://msdn.microsoft.com/en-us/library/office/ff846868(v=office.14).aspx

This one for Word 2007: https://msdn.microsoft.com/en-us/library/ee426857(v=office.12).aspx or this one:

https://msdn.microsoft.com/en-us/library/ee426857(v=office.13).aspx

And this one for 2003: https://msdn.microsoft.com/en-us/library/office/aa211923(v=office.11).aspx

Couldn't dig up the one for Word 2011.

Re: Changing default language in comment boxes (Word) New

I'd turn track changes off for this.

Put your cursor in a comment box (not sure if you have to do this but I do

just to be sure) and then click on the styles option, then manage styles.

Then find 'comment text' in the list and highlight that. Then click on modify.

Then in the bottom right, click format, then language, then choose your

language.

Then click all the OKs required to get back out and that should do it.

If I've not explained it very well, I think you can do a Google search to

find blogs on exactly this topic.

To do an F&R from here to the end, use:

myFind = Selection

Selection.MoveStart , -1

Selection.End = ActiveDocument.Content.End

Options.DefaultHighlightColorIndex = wdGray25

Set rng = Selection.range.Duplicate

With rng.Find

 .ClearFormatting

 .Replacement.ClearFormatting

 .Text = myFind

 .Wrap = False

 .Font.Name = "Times New Roman"

 .Replacement.Text = "<zczc>^&</zczc>"

 .Replacement.Highlight = True

 .Forward = True

 .MatchCase = True

 .MatchWildcards = False

 .Execute Replace:=wdReplaceAll

End With

Sub AlphaCiteGroup()

Dim group() As String

Dim start As String

Dim arraySize As Long

Dim firstcount As Long

Dim secondcount As Long

Dim tempStr As String

Dim arrayTrack As Long

start = Selection.Text

firstcount = Len(start)

tempStr = Replace(start, ";", "")

secondcount = Len(tempStr)

arraySize = (firstcount - secondcount) + 1

ReDim group(arraySize)

group = Split(start, "; ", -1) <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

WordBasic.SortArray group() <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

arrayTrack = 0

tempStr = ""

While arrayTrack < arraySize

tempStr = tempStr & group(arrayTrack) & "; "

arrayTrack = arrayTrack + 1

Wend

tempStr = Trim(tempStr)

firstcount = Len(tempStr)

tempStr = Left(tempStr, firstcount - 1)

Selection.TypeText tempStr

End Sub

> To transfer the keystrokes you'll need to use the ShortcutOrganizer -

> available at http://www.addbalance.com/word/download.htm#ChrisWoodman -

> Version 13.7. Dec2015

> <http://www.addbalance.com/word/download/KeyboardShortcutOrganizer2010.zip>

Sub TaskPaneCloser()

Dim CB As CommandBar

sdfasd = CommandBars.Count

For Each CB In CommandBars

 ' On Error Resume Next 'we dont care about CB's that wont respond

 ' If CB.Visible Then CB.Visible = False

 dskfhdkas = CB.Context

 dskfdkas = CB.Position

 Debug.Print CB.Name

Next

End Sub

Sub Test_1()

myText = CurDir()

MsgBox myText

End Sub

Sub Test_2()

Dim myText As String

myText = CurDir()

MsgBox myText

End Sub

Sub Test_3()

nowFile = ActiveDocument.Name

MsgBox nowFile

End Sub

Sub Test_4()

Dialogs(wdDialogFileOpen).Show

nowFile = ActiveDocument.Name

MsgBox nowFile

End Sub

Sub Test_5()

Dialogs(wdDialogFileOpen).Show

dirPath = ActiveDocument.Path

MsgBox dirPath

End Sub

Sub Test_7()

Dialogs(wdDialogFileOpen).Show

ActiveDocument.Close

dirPath = ActiveDocument.Path

myFile = Dir(dirPath & Application.PathSeparator)

MsgBox myFile

myFile = Dir(dirPath & Application.PathSeparator)

MsgBox myFile

myFile = Dir()

MsgBox myFile

End Sub

Sub sdhfk()

myText = CurDir()

nowFile = ActiveDocument.Name

MsgBox myText

Dialogs(wdDialogFileOpen).Show

dirPath = ActiveDocument.Path

r = r & "dirPath = " & ActiveDocument.Path & CR2

Debug.Print Right(r, 75)

If ActiveDocument.Name <> nowFile Then ActiveDocument.Close

r = r & "CurDir(dirPath) " & CurDir(dirPath) & CR2

ChDir dirPath

r = r & "After ChDir dirPath, CurDir(dirPath) =" & CurDir(dirPath) & CR2

' Read the names of all the files in this directory

myFile = Dir(dirPath & Application.PathSeparator)

r = r & "Dir(dirPath & Application.PathSeparator) gives: " & myFile & CR2

myFile = Dir()

r = r & "The first Dir() gives: " & myFile & CR2

myFile = Dir()

r = r & "The first Dir() gives: " & myFile & CR2

Documents.Add

Selection.TypeText Text:=r

End Sub

To find the enumeration of commandbars by name and internal number, google "Word commandbar enumeration".

For more general information google "Word 2013 object model".

In case this is useful to anyone else, this macro (found on internet, not

invented by me) changes the shading colour of table cells from the colour

of the cell the cursor is in to grey. Change the RGB value for a different

colour.

Sub ChangeCellFills()

Dim myRange As Range

myColor = Selection.Range.Cells(1).Shading.BackgroundPatternColor

For Each myTable In ActiveDocument.Tables

Set myRange = myTable.Range

For Each myCell In myRange.Cells

If myCell.Shading.BackgroundPatternColor = myColor Then

myCell.Shading.BackgroundPatternColor = RGB(201, 201, 201)

End If

Next myCell

Next myTable

End Sub

And this version lets you pick a replacement colour:

Sub ChangeCellFills()

If Not Selection.Information(wdWithInTable) Then

MsgBox "Place the cursor in a table cell."

Exit Sub

end if

Dim myRange As Range

CurrentColor = Selection.Range.Cells(1).Shading.BackgroundPatternColor

Set myDialog = Dialogs(wdDialogFormatBordersAndShading)

myDialog.DefaultTab = wdDialogFormatBordersAndShadingTabShading

myDialog.Display

NewColor = myDialog.BackgroundRGB

For Each myTable In ActiveDocument.Tables

Set myRange = myTable.Range

For Each myCell In myRange.Cells

If myCell.Shading.BackgroundPatternColor = CurrentColor Then

myCell.Shading.BackgroundPatternColor = NewColor

End If

Next myCell

Next myTable

End Sub

Weird fonts in Asian documents. Try changing the language/font in the

Themes section, to the left on the Page Layout tab.

> Error I am getting:Run-time error '4198':Command failed

> Debug highlights this:Selection.PasteSpecial DataType:=wdPasteText

Yes, sorry about this, but it is a known problem, though not one for which

I have a consistent solution.

If you look at those of my programs that cause this error, you will

probably see two lines, something like this:

' Selection.PasteAndFormat (wdFormatPlainText)

Selection.PasteSpecial DataType:=wdPasteText

These are two different commands, each of which is supposed to do exactly

the same thing - paste a text-only version of what is currently held in the

clipboard (i.e. the text that you - or the macro - selected, before doing a

Ctrl-C).

Over the years, I've found that on some computers both work, on others the

one works and the other doesn't, and on yet others vice versa. What a pain!

So what I suggest you try is to switch over which one is enabled, and which

one is "commented out" by having an apostrophe in front of it, i.e. change it

to:

Selection.PasteAndFormat (wdFormatPlainText)

' Selection.PasteSpecial DataType:=wdPasteText

Let me know if the problem persists. If it does, then the only thing I can

think is that it's being caused by that program you mentioned.

Sub ScratchMacro()

'A basic Word macro coded by Greg Maxey

Dim oGR As Range

 For Each oGR In ActiveDocument.GrammaticalErrors

 oGR.GrammarChecked = 1

 ActiveDocument.Comments.Add oGR, "Passive Voice"

 Next

lbl_Exit:

 Exit Sub

End Sub

> I just downloaded your Free Macros FR Edit and Proofing Pack. I get the

> following compile error :

>

> "Variable not defined"

I'm afraid that I'm a very lazy programmer. :-(

I don't declare *any* of my variables.

Presumably, on your computer someone must have set VBA to detect undeclared

variables. So you will have to turn this option off:

In VBA, go to Tools -- Options -- Editor, and find "Require Variable

Declaration". Turn this option off, and that, I think, should do the trick.

Extra info:

~~~~~~~~~~~ 

 

I checked the options menu, the  "Require Variable Declaration" was turned 

OFF, but on further exploration, another macro that I had pasted from the 

internet contained "Option Explicit". Deleted it, and the macros work fine. 

 

 

##################################################### 

 

One thing I have wondered about is a macro to check for quotation marks and 

especially when the Bible has several levels at times. I have succeeded in 

developing a routine that is useful for us. This macro depends upon firstly 

changing all normal quotes to open curly quotes if they are present. The 

rest will work itself out.  

The only thing it cannot do is determine what happens when there is a non 

coupling open and closing quote. In this case the paragraph is highlighted.  

 

Sub CheckQuotes() 

    Dim sRaw As String 

    Dim jSmart As Integer 

    Dim J As Long 

 

    Selection.HomeKey Unit:=wdStory 

    Application.ScreenUpdating = False 

    Selection.Find.ClearFormatting 

    With Selection.Find 

        .Text = "'" 

        .Replacement.Text = "'" 

        .Forward = True 

        .Wrap = wdFindStop 

        .Format = True 

        .MatchCase = False 

        .MatchWholeWord = False 

        .MatchWildcards = False 

        .MatchSoundsLike = False 

        .MatchAllWordForms = False 

    End With 

    Selection.Find.Execute 

 

    While Selection.Find.Found 

        Selection.MoveDown Unit:=wdParagraph, Count:=1, Extend:=wdExtend 

        Selection.MoveLeft Unit:=wdCharacter, Count:=1, Extend:=wdExtend 

        sRaw = Selection.Text 

        jSmart = 0 

        For J = 1 To Len(sRaw) 

'Opening quotes smart single/double and normal single/double quote 

            If Mid(sRaw, J, 1) = Chr(145) Or Mid(sRaw, J, 1) = Chr(147) Or Mid(sRaw, J, 1) = Chr(34) Or 

(Mid(sRaw, J, 1) = Chr(39)) Then 

                If J > 1 Then 

                    If Mid(sRaw, J - 1, 1) = " " Then 

                        jSmart = jSmart + 1 

                        If jSmart = 2 Or jSmart = 4 Or jSmart = 6 Then 

'Make every other opening quote a double quote 



                            Mid(sRaw, J, 1) = Chr(147) 

                        Else 

                            Mid(sRaw, J, 1) = Chr(145) 

                        End If 

                    End If 

                Else 

'Opening quote at beginning of paragraph 

                    jSmart = jSmart + 1 

                    If jSmart = 2 Or jSmart = 4 Or jSmart = 6 Then 

                        Mid(sRaw, J, 1) = Chr(147) 

                    End If 

                End If 

            End If 

'Closing quotes smart single/double and normal single/double 

            If Mid(sRaw, J, 1) = Chr(146) Or Mid(sRaw, J, 1) = Chr(148) Or Mid(sRaw, J, 1) = Chr(34) Or 

(Mid(sRaw, J, 1) = Chr(39)) Then 

                If Mid(sRaw, J + 1, 1) = " " Or Mid(sRaw, J + 1, 1) = "." Or Mid(sRaw, J + 1, 1) = ")" Or Mid(sRaw, J + 

1, 1) = "," Then 

                    jSmart = jSmart - 1 

                    If jSmart = 1 Or jSmart = 3 Or jSmart = 5 Then 

                        Mid(sRaw, J, 1) = Chr(148) 

                    Else 

                        Mid(sRaw, J, 1) = Chr(146) 

                    End If 

                End If 

            End If 

         

        Next 

        If jSmart <> 0 Then 

            jSmart = 0 

            Selection.Range.HighlightColorIndex = wdYellow 

        End If 

        Selection.TypeText sRaw 

        Selection.MoveDown Unit:=wdParagraph, Count:=1, Extend:=wdExtend 

        If jSmart <> 0 Then 

            Selection.Range.HighlightColorIndex = wdYellow 

        End If 

        Selection.Collapse Direction:=wdCollapseEnd 

        Selection.Find.Execute 

    Wend 

' Move cursor to start of document 

    Selection.HomeKey Unit:=wdStory 

    Application.ScreenUpdating = True 

End Sub 

 

##################################################### 

Date:         Sat, 14 Nov 2015 09:06:38 +1100 

Subject: Progress bars (WAS 'Microsoft Word - Not Responding) 

 

After looking at the example mentioned by Steve ( 

http://www.excel-easy.com/vba/examples/progress-indicator.html) I decided 

to have a go at creating a Word-oriented version, based on the same code. 

Some of you may be interested to see the result. 

 

The only Word-specific part is in the procedure the author calls 'code'. I 

replaced this with a macro that performs a simple and pointless task on a 

long Word document - making the font colour red, one word at a time. Though 



it's definitely pointless, it does provide a demonstration of the working, 

because you can see it happening at the same time as you see the progress 

bar. 

 

It should be fairly easy to adapt for use with other macros that use a For 

loop at the top level - which is the reason for posting it. In most cases 

you'll probably want to introduce an Application.ScreenUpdating = False 

line to speed it up and not force the user to watch each step. 

 

i followed the construction pretty much as described for the original 

example, apart from the 'code' procedure. You can see the final result at 

http://1drv.ms/1Y9LYsI (you'll need to download it to run the macro). Below 

is the new version of the 'code' procedure and the accompanying 'progress' 

procedure: 

 

Sub code() 

    Dim i As Integer, n As Integer 

    Dim d As Integer 

    Dim pctCompl As Integer, pct_incr As Integer 

    Dim StartTime As Variant 

 

    With ActiveDocument 

        pct_incr = 10          ' size of increment in progress bar 

        n = .Words.Count 

        d = Int(n * pct_incr / 100) 

        For i = 1 To n 

            .Words(i).Font.ColorIndex = wdRed 

 

            If i Mod d = 0 Then 

                pctCompl = pct_incr * Int(i / d) 

                progress pctCompl 

            End If 

        Next i 

    End With 

    UserForm1.Hide 

End Sub 

 

Sub progress(pctCompl As Integer) 

    With UserForm1 

        .Text.Caption = pctCompl & "% complete" 

        .Bar.Width = pctCompl * 2 

    End With 

 

    DoEvents 

End Sub 

 

I have kept the button to launch the macro, but i can't see why you would 

want to launch such a macro from a button in the document in real life. 

 

Regards 

 

Howard 

 

-- 

mailto:word-pc-unsubscribe-request@liverpool.ac.uk  to leave 

mailto:word-pc-subscribe-request@liverpool.ac.uk to join 

(no subject or command text required) 



http://listserv.liv.ac.uk/archives/word-pc.html 

 

 

##################################################### 

 

Multiple views 

 Set thisDoc = ActiveDocument.ActiveWindow 

 

 

thisWindow = Windows(1).Caption 

 

 

Windows(thisWindow).Activate 

 

Seems to me there's a bit of a conceptual problem here. When I think about 

it, I realise that it's really a bit strange that you can activate a 

document when really it's only windows for which activation makes sense. I 

don't often work with multiple windows for the same doc, so haven't thought 

about this before. 'ActiveDocument' is 

?, as far as I can see,? 

really a shorthand for ActiveWindow.Document. 

? So the assignment Set thisDoc = ActiveDocument.ActiveWindow is really Set 

thisDoc = ActiveWindow.Document.ActiveWindow, which is exactly the same as 

Set thisDoc = ActiveWindow. (I may be pedantic, but this notation really 

grates for me as I would only use the variable thisDoc for a document, 

which would be declared using Dim thisDoc as Document. And so that 

assignment would cause a type mismatch. ?I'd use thisWin in place of 

thisDoc and declare Dim thisWin as Window, then if you need the document 

use thisWin.Document.) 

 

I don't how what logic VBA uses to decide which window to activate when you 

have a statement Doc.Activate and the document has multiple windows. Seems 

pretty much random to me when I try it out. 

 

 

##################################################### 

 

 Set rng = ActiveDocument.range(Selection.Start, Selection.End) 

 

 is equivalent to 

 

 Set rng = Selection.range 

 

 

 

##################################################### 

 

As an alternative to: 

 

Selection.PasteAndFormat (wdFormatPlainText) 

' Selection.PasteSpecial DataType:=wdPasteText 

 

you could try using 

 

 

Selection.Paste 

ActiveDocument.Content.Style = ActiveDocument.Styles(wdStyleNormal) 



ActiveDocument.Content.Font.Reset 

ActiveDocument.Content.HighlightColorIndex = wdNoHighlight 

 

 

##################################################### 

 

Howard Silcock 

 

I had to see if I could implement the ideas I mentioned in my last post. 

 

It turned out that with the approach I described, the table problem doesn't 

arise, because you can't cross a cell boundary without encountering a 

"non-allowable" character. 

 

Here's the macro I came up with. I followed Jacques's suggestion: if the 

selection is a rectangular one (not just an insertion point), then the 

link's attached to that selection, but if it's just an insertion point, the 

macro finds the URL or email address and attaches the link to that. 

 

I think it works when the text is in a table or at the start or end of the 

document. I haven't found a case where it doesn't work yet! 

 

Sub URLlink3() 

    Dim i As Long, InitPos As Long 

    Dim LinkRng As Range 

    Dim LinkRngStartPos As Long, LinkRngEndPos As Long 

    Dim AddressText As String, DisplayText As String 

    Dim URLchars As String 

 

    URLchars = "[A-Za-z0-9._/(?)%=&(#)~@:-]" 

    With ActiveDocument 

        If Selection.Type = wdSelectionIP Then 

            InitPos = .Range(0, Selection.Start).Characters.Count 

 

            i = InitPos 

            Do While i > 0 

                If .Characters(i).Text Like URLchars Then 

                    i = i - 1 

                Else 

                    Exit Do 

                End If 

            Loop 

            LinkRngStartPos = .Characters(i + 1).Start 

 

            i = InitPos + 1 

            Do While i < .Characters.Count + 1 

                If .Characters(i).Text Like URLchars Then 

                    i = i + 1 

                Else 

                    Exit Do 

                End If 

            Loop 

            LinkRngEndPos = .Characters(i).Start 

 

            Set LinkRng = .Range(LinkRngStartPos, LinkRngEndPos) 

 

        ElseIf Selection.Type = wdSelectionNormal Then 



            Set LinkRng = Selection.Range 

 

        Else 

            MsgBox "Please make another selection" 

            Exit Sub 

        End If 

 

        DisplayText = LinkRng.Text 

        AddressText = IIf(InStr(DisplayText, "@") > 0, "mailto:", "") & _ 

            DisplayText 

 

        ActiveDocument.Hyperlinks.Add Anchor:=LinkRng, 

Address:=AddressText, _ 

            TextToDisplay:=DisplayText 

    End With 

End Sub 

 

(As a matter of style, I prefer not to move the cursor around in a macro 

unless that's necessary.) 

 

Howard 

 

 

##################################################### 

  ChangeFileOpenDirectory _ 

    "E:\Users\User\Desktop\HardDisc4CATS\MyFiles2\WIP\aaa\" 

 

  Selection.InsertFile FileName:="Abstract_2_+Engl_150115_PB.docx", Range:= _ 

    "", ConfirmConversions:=False, Link:=False, Attachment:=False 

 

 

##################################################### 

On Error GoTo ReportIt 

'WordBasic.PreviousChangeOrComment 

Restart: 

thisRev = ActiveDocument.Range(0, _ 

     Selection.Range.Revisions(1).Range.End).Revisions.Count 

Do 

  i = thisRev 

  Set myRev = ActiveDocument.Revisions(i) 

  myRev.Range.Select 

  myType = myRev.FormatDescription 

  thisRevString = InputBox(myType, "Accept this change?", Trim(Str(i))) 

  If thisRevString = "" Then Exit Sub 

  thisRev = Val(thisRevString) 

Loop Until i = thisRev 

 

theEnd = ActiveDocument.Content.End 

i = 0 

For Each rev In ActiveDocument.Range.Revisions 

  Set rng = rev.Range 

  thisType = rev.FormatDescription 

  If thisType = myType Then 

  i = i + 1 

  rng.Revisions.AcceptAll 

  End If 

  StatusBar = "Accepting track changes...  " _ 



       & Str(theEnd - rng.End) 

Next rev 

StatusBar = "Accepted track changes:  " & Str(i) 

Exit Sub 

 

ReportIt: 

' There are no files open at all 

If Err.Number = 5941 Then 

  WordBasic.NextChangeOrComment 

  Beep 

  Resume Restart 

Else 

' Display Word's error message 

  MsgBox Err.Description, vbExclamation, "Error from Word" 

End If 

 

 

 

##################################################### 

 

Editing comment balloons characteristics 

 

"Comment Text" style isn't the only place you'll have to make adjustments 

to get the results you want. You'll also need to change the Bubble Text style. 

 

 

 A blog post by my colleague Liz Dexter will 

guide you through the necessary steps: 

 

http://libroediting.com/2012/10/19/customising-comment-boxes-in-word/ 

 

 

The trick turned out to be that the document was created in Japan. 

Continued Google searching gave me the answer at 

http://www.internationalskeptics.com/forums/showthread.php?t=235700. 

I added Japanese as an editing language (but didn't install the 

corresponding proofing tools which would cost $ and isn't necessary). Now, 

I just have to right-click on one of the comments that shows up as 

double-spaced and uncheck the box next to "snap to grid when document grid 

is defined" (this box will not be displayed without Japanese being 

available as an editing language). Once that one comment balloon is showing 

up single-spaced (the default and my preference), I can highlight it, 

right-click on the Comment Text style, and choose "update comment text to 

match selection." That fixes all of the comment balloons in the document! 

 

 

##################################################### 

 

Ariela Marks wants to know how to do a mass table delete in Word. 

 

Hi, Ariela. 

 One S&R command won't do the job, but you can quickly add macro 

to do it: 

 

    Do While ActiveDocument.Tables.Count >= 1 

        Selection.GoTo What:=wdGoToTable, Which:=wdGoToNext, Count:=1, 

Name:="" 



        Selection.Tables(1).Select 

        Selection.Tables(1).Delete 

  Loop 

 

 

##################################################### 

> < Making Word 2010 Work for You 

 

My little book would be helpful to the extent of establishing a bedrock 

understanding of styles and templates - but I think Susan needs (also 

needs?) something more detailed. I don't, for example, get into the 

interplay of styles and themes that Jessica mentions. 

 

The advice for Mac users boils down to _Run an emulator and get a PC 

version of Word._ Mac Word just isn't the same product, and while a lot 

of the observations in the book can be applied on a Mac, I abandoned the 

effort made in the first book to keep track of the differences and 

address them wherever they're relevant. 

 

-- 

 

##################################################### 

 

The macro book on the web! 

 

http://oreilly.com/catalog/writewordmacro/chapter/ch17.html 

 

##################################################### 

Page Layout/Hyphenation and click 'None' (in Word 2013), and check that 

'automatically hyphenate document' is not ticked. 

 

##################################################### 

 

(Version 1) 

 

Ah yes, this is a standard query from continental Europe and South Africa. 

It's to do with a thing called the "list separator" that is set in your 

operating system, but then used by Word. 

 

You just need to change the list separator from a semicolon to a 

comma. Here are my standard instructions: 

 

The "list separator" used within Word needs to be comma, not semicolon. 

 

However, this is not a *Word* option, rather it's an operating system 

option. 

 

So, on Windows 7, 8.1 and 10, it is in the Control Panel under "Clock 

Language and Region" and then "Region" and then "Additional Settings" 

(which is a button near the bottom of the Region window). In Aditional 

Settings, the fourth from the bottom is "List separator". Change it to a 

comma and click OK. 

 

And then you need to restart the computer to force Word to take account of 

the fact that you've changed the list separator. 

 

Hope that gets it sorted. 



 

 

Out of interest, can I ask how you found out about my macros? 

 

##################################################### 

 

(Version 2) 

 

This is a problem with computers set up for Continental Europe and South 

Africa, where they use the decimal comma instead of the UK's decimal point. 

If you're interested, I'll give you the full explanation (or just jump to 

the solution, at the end, my "standard instructions"... 

 

 

The "pattern match" error is caused by the use of semicolons instead of 

commas in wildcard searches: 

 

For example, if I wanted to find "one or more consecutive vowels", I could 

use a wildcard search for: 

 

[aeiou]{1,} 

 

and it would find, "ea", "oo", "ie", "ooooo" etc. 

 

However, if you try that in the normal Find window, I think it will produce 

that "pattern match" error. 

 

But if you change the Find to: 

 

[aeiou]{1;} 

 

with a semicolon, it should now work on your computer. 

 

But my macros use comma, not semicolons, so you either have to change all 

my macros, or change the option in your computer. 

 

 

 

Here are my standard instructions: 

 

The "list separator" used by Word needs to be comma, not semicolon. 

 

However, this is not a *Word* option, rather it's a Windows operating system 

option. 

 

So, on Windows 7, 8.1 and 10, it is in the Control Panel under "Clock Language 

and Region" and then "Region" and then "Additional settings" (which is a 

button near the bottom of the Region window). In Aditional settings, the 

fourth from the bottom is "List separator". Change it to a comma and click OK. 

 

Then you will need to do a Restart. 

 

 

 

##################################################### 

iz/is spelling 

 



http://blog.oxforddictionaries.com/2011/03/ize-or-ise/ 

##################################################### 

On Error GoTo ReportIt 

'WordBasic.PreviousChangeOrComment 

Restart: 

thisRev = ActiveDocument.Range(0, _ 

     Selection.Range.Revisions(1).Range.End).Revisions.Count 

Do 

  i = thisRev 

  Set myRev = ActiveDocument.Revisions(i) 

  myRev.Range.Select 

  myType = myRev.FormatDescription 

  thisRevString = InputBox(myType, "Accept this change?", Trim(Str(i))) 

  If thisRevString = "" Then Exit Sub 

  thisRev = Val(thisRevString) 

Loop Until i = thisRev 

 

theEnd = ActiveDocument.Content.End 

i = 0 

For Each rev In ActiveDocument.Range.Revisions 

  Set rng = rev.Range 

  thisType = rev.FormatDescription 

  If thisType = myType Then 

  i = i + 1 

  rng.Revisions.AcceptAll 

  End If 

  StatusBar = "Accepting track changes...  " _ 

       & Str(theEnd - rng.End) 

Next rev 

StatusBar = "Accepted track changes:  " & Str(i) 

Exit Sub 

 

ReportIt: 

' There are no files open at all 

If Err.Number = 5941 Then 

  WordBasic.NextChangeOrComment 

  Beep 

  Resume Restart 

Else 

' Display Word's error message 

  MsgBox Err.Description, vbExclamation, "Error from Word" 

End If 

 

 

##################################################### 

 

comment stuff 

 

 

thisComm = 0 

If Selection.Information(wdInCommentPane) = True Then 

  thisComm = Selection.Comments(1).Index 

End If 

 

 

totComments = ActiveDocument.Comments.Count 

If totComments = 0 Then Beep: Exit Sub 



 

thisComm = 0 

If Selection.Information(wdInCommentPane) = True Then 

  thisComm = Selection.Comments(1).Index 

End If 

 

If thisComm = 0 Then 

  WordBasic.GoToNextComment 

'  WordBasic.NextComment 

  thisComm = 0 

  If Selection.Information(wdInCommentPane) = True Then 

    thisComm = Selection.Comments(1).Index 

  End If 

 

  If Selection.Start = hereNow Then 

    Beep 

  End If 

End If 

 

If thisComm = totComments Then 

  Beep 

  Exit Sub 

Else 

  WordBasic.GoToNextComment 

'  WordBasic.NextComment 

End If 

 

hereNow = Selection.Start 

 

totComments = ActiveDocument.Comments.Count 

If totComments = 0 Then Beep: Exit Sub 

 

thisComm = 0 

If Selection.Information(wdInCommentPane) = True Then 

  thisComm = Selection.Comments(1).Index 

End If 

 

If thisComm = 0 Then 

'  WordBasic.GoToPreviousComment 

  WordBasic.PreviousComment 

  If Selection.Start = hereNow Then 

    Beep 

    Exit Sub 

  End If 

End If 

 

If thisComm = 1 Then 

  Beep 

  Exit Sub 

Else 

  WordBasic.GoToPreviousComment 

'  WordBasic.GoToPreviousComment 

End If 

 

 

##################################################### 

> Have you tried Reveal Formatting (Shift F1)? 



 

##################################################### 

If Selection.Bookmarks.Exists("\EndOfDoc") = True Then 

  MsgBox "END OF DOCUMENT REACHED!" 

End If 

 

 

##################################################### 

 

wildcard F&R. 

 

 

The other resource is in the public domain, and is very useful: 

 

http://word.mvps.org/faqs/general/usingwildcards.htm 

##################################################### 

 

From: http://word.mvps.org/faqs/macrosvba/WordBasicCommands.htm 

 

FileNameInfo$() 

 

This is another very useful function for which there is no direct VBA equivalent. FileNameInfo allows you to get 

just the filename or a fully qualified pathname from a filename given to it. The nearest equivalent in VBA are the 

Name, FullName and Path properties of the Document object. 

 

FileNameInfo is different in that you don't need to have the document open. 

 

The syntax is 

 

x = WordBasic.FilenameInfo$(Filename$, FileType) 

 

where Filename is the name of the file, and FileType is a number which defines the  part of the filename you want 

to return: 

 

1 - the full pathname, e.g. C:\My Documents\My File.doc" 

2 - the filename only, if the file is in the current folder, otherwise the full pathname 

3 - the filename only 

4 - the filename without the extension 

5 - the path without the filename 

6 - the UNC pathname 

 

One case where FileNameInfo$ is very useful is to get the pathname of a file which has just been selected by the 

user in the FileOpen dialog. The following code returns the full pathname of a file selected by the user. 

 

With Dialogs(wdDialogFileOpen) 

    If .Display Then 

        MsgBox WordBasic.FilenameInfo$(.Name, 1) 

    Else 

        MsgBox "No file selected" 

    End If 

End With 

 

##################################################### 

 

pattern match not valid - use ';' instead of ',' in 

 

 



I am aware that quite a lot of my macros won't work on continental machines 

because of a single option that is set up in the operating system (not in 

Word itself), and it relates to the continental use of the decimal comma. 

Sounds odd, I know, but we've had this many times, and it's easy to fix. 

 

The trouble is that on the continent, you would normally use a decimal 

comma rather than a decimal full stop (i.e. four and a half is written as 

"4,5", and not "4.5"). 

 

So, within the operating system, Microsoft have chosen to use a semicolon, 

rather than a comma, as the so-called "list separator". 

 

So, in wildcard find and replace, which a number of my macros use, instead 

of looking for, say "[A-Z]{2,4}" (between two and four capital letters) you 

would have to use "[A-Z]{2;4}". 

 

Now, you could either change all of the lines of all of the macros from 

comma to semicolon (DocAlyse alone has 30 of them!) or you could tell the 

computer to use comma, not semicolon, as the list separator. 

 

 

This can be set up via the Windows control panel: 

 

In Windows 7 you can find the list separator via Control Panel -- Region & 

Language -- Format -- Additional Settings. 

 

In Windows 8 and 10, it's Control Panel -- Clock, Language and Region -- 

Region -- Additional settings... -- List separator. 

 

So once you've found it, if you change the list separator from ";" to "," 

- then do a computer Restart - and all should be well. 

 

 

##################################################### 

 

This is how to switch between headers and footers and the main text: 

 

Sub Sub_FTR_0() 

' 

ActiveDocument.ActiveWindow.ActivePane.View.SeekView = wdSeekCurrentPageFooter 

 

For i = 1 To ActiveDocument.Sections.Count 

 'REM: INSERT Code from RECORD MACRO recorded when editing one Footer correctly 

    Selection. [[xxx]], etc. 

 

If i = ActiveDocument.Sections.Count Then GoTo Line1 

 

    ActiveDocument.ActiveWindow.ActivePane.View.NextHeaderFooter 

 

Line1: 

Next 

 

    ActiveWindow.ActivePane.View.SeekView = wdSeekMainDocument 

 

End Sub 

 

 WdSeekView can be one of these WdSeekView constants: 



 

wdSeekCurrentPageFooter 

 

wdSeekCurrentPageHeader 

 

wdSeekEndnotes 

 

wdSeekEvenPagesFooter 

 

wdSeekEvenPagesHeader 

 

wdSeekFirstPageFooter 

 

wdSeekFirstPageHeader 

 

wdSeekFootnotes 

 

wdSeekMainDocument 

 

wdSeekPrimaryFooter 

 

wdSeekPrimaryHeader 

 

 

 

 

 

##################################################### 

This macro highlights all additions and deletions in the main body of the 

document: 

 

Sub HighLightThosePeskyRevisions() 

Dim aRevision As Revision 

For Each aRevision In ActiveDocument.Revisions 

    If (aRevision.Type = wdRevisionDelete) Or (aRevision.Type = 

wdRevisionInsert) Then 

        aRevision.Range.HighlightColorIndex = wdYellow 

    End If 

  Next aRevision 

End Sub 

 

 

##################################################### 

 

 

> Yes, this procedure works OK. I can't see how to turn it into a 

> macro, so I'll just have to go through the tedious keystrokes, but 

> it's much better than trying to delete all headers and footers 

> manually, as it were.  Thanks both. 

 

OK, I've had a ferret around, found the general principle 

and then honed it down to the following macro: 

 

Sub GetRidOfHeadersAndFooters() 

' Version 11.10.13 

' Delete all headers, footers and watermarks 

 



ActiveDocument.DocumentInspectors(2).Fix 0, "" 

 

End Sub 

 

 

##################################################### 

Neat little macro I just found on LinkedIn (with thanks to Kathy Evans, who posted it): 

 

 

Sub PrintCurrentPage() 

Application.PrintOut Range:=wdPrintCurrentPage 

End Sub 

 

It does exactly what it says in the sub line, and I often want to do that. 

 

 

##################################################### 

 

In 2010 you can specify how changes are marked, but text highlight is not one of the choices.  You can make them 

all a specific color rather than different colors by author, and you can make them bold. 

 

This macro highlights all additions and deletions in the main body of the document: 

 

Sub HighLightThosePeskyRevisions() 

Dim aRevision As Revision 

For Each aRevision In ActiveDocument.Revisions 

    If (aRevision.Type = wdRevisionDelete) Or (aRevision.Type = wdRevisionInsert) Then 

        aRevision.Range.HighlightColorIndex = wdYellow 

    End If 

  Next aRevision 

End Sub 

 

##################################################### 

Paul: 

 

I've hit the "list separator" problem in two places. First in statements like your Find, and second in TOC fields. 

 

I have code that determines the separator in use and executes the correctly formatted statement. 

 

Select Case Application.International(wdListSeparator) 

    Case "," 

        With objRange.Find 

            .MatchWildcards = True 

            .Text = " {2,}" 

            .Replacement.Text = " " 

            .Execute Replace:=wdReplaceAll 

        End With 

    Case ";" 

        With objRange.Find 

            .MatchWildcards = True 

            .Text = " {2;}" 

            .Replacement.Text = " " 

            .Execute Replace:=wdReplaceAll 

        End With 

End Select 

 



I don't know how to compensate for the TOC (and perhaps other fields?) stumbling on the separator. You can 

change the separator on the fly using Control Panel > Region and Language. 

 

I've also run into problems referring to the built-in styles by their English names. There's a language-independent 

enumeration of the built-in styles you can use in code,  Word.WdBuiltinStyle. So referring to wdStyleHeading1 in 

your code will get the right style no matter which language and spelling is used in the GUI. 

 

Most times, however, I expect and use a specific set of aliases. 

 

Bear 

 

 

 

Why not simplify that code with this: 

strLS=Application.International(wdListSeparator) 

With objRange.Find 

  .MatchWildcards = True 

  .Text = " {2" & strLS & "}" 

  .Replacement.Text = " " 

  .Execute Replace:=wdReplaceAll 

End With 

 

 

Jacques Raubenheimer 

Lecturer 5/8: Biostatistics 

Lektor 5/8: Biostatistiek 

PO Box / Posbus 339, Bloemfontein 9300, Republic of South Africa / Republiek van Suid-Afrika 

051 4013115 

 

##################################################### 

 ActiveDocument.undo 

 

 

##################################################### 

Sub SquareNestCurly() 

' Version 17.08.12 

' Find any [] nested inside a [] and make them into {} 

 

Selection.HomeKey Unit:=wdStory 

insideSquares = False 

With Selection.Find 

  .ClearFormatting 

  .Replacement.ClearFormatting 

  .Text = "[\[\]]" 

     .Replacement.Text = "" 

     .Forward = True 

     .Wrap = False 

     .MatchWildcards = True 

End With 

Selection.Find.Execute 

Do While Selection.Find.Found 

  If Selection = "[" Then 

    If insideSquares = True Then 

      Selection.TypeText Text:="{" 

      Selection.Collapse wdCollapseEnd 

      Selection.Find.Execute 

      Selection.TypeText Text:="}" 



    Else 

      insideSquares = True 

    End If 

  Else 

    insideSquares = False 

  End If 

  Selection.Collapse wdCollapseEnd 

  Selection.Find.Execute 

Loop 

End Sub 

 

 

 

 

##################################################### 

 

Sub JumpScroll2() 

Dim OrigSel As Range 

 

Set OrigSel = Selection.Range 

Selection.EndKey Unit:=wdStory 

OrigSel.Select 

ActiveDocument.ActiveWindow.SmallScroll down:=1 

End Sub 

 

##################################################### 

 

Sub EmailFormatter() 

' Version 08.07.13 

' Format paragraphs in an email 

 

Set rng = ActiveDocument.Content 

With rng.Find 

  .ClearFormatting 

  .Replacement.ClearFormatting 

  .Text = "^p^p" 

  .Wrap = wdFindContinue 

  .Replacement.Text = "zczc" 

  .MatchWildcards = False 

  .MatchWholeWord = False 

  .MatchSoundsLike = False 

  .Execute Replace:=wdReplaceAll 

End With 

With rng.Find 

  .Text = "^p" 

  .Replacement.Text = " " 

  .Execute Replace:=wdReplaceAll 

End With 

With rng.Find 

  .Text = "zczc" 

  .Replacement.Text = "^p^p" 

  .Execute Replace:=wdReplaceAll 

End With 

 

End Sub 

 

##################################################### 



 

Word has a peculiar dual nature when it comes to language settings. I 

suspect that you need to go into Find and Replace and change everything 

to US English there, too: 

 

Find What: no text, no formatting 

Replace With: no text, Language: English (U.S.) 

 

Probably a good idea to go to the Track Changes options and turn off 

format tracking, first.... 

 

 

##################################################### 

 

 

 

I guess the macro fails when you first start Word? It does work when creating a new document or opening an 

existing document? In that case, you may work around it by modifying the code so that it adds a delay. Something 

like this: 

 

Sub AutoOpen() 

Call SetDesiredView 

End Sub 

 

Sub AutoNew() 

Call SetDesiredView 

End Sub 

 

Sub SetDesiredView() 

 

Application.OnTime Now + TimeValue("00:00:05"), "View2" 

 

Exit Sub 

End Sub 

 

Sub View2() 

On Error GoTo errhandler 

ActiveWindow.View.Type = 3 

With ActiveWindow.View.Zoom 

    .PageColumns = 1 

    .Percentage = 100 

End With 

Exit Sub 

errhandler: 

Exit Sub 

End Sub 

 

In the above macros, the delay is 5 seconds (as specified in the TimeValue function), but it may work with less 

time than that. 

Stefan Blom, Microsoft Word MVP 

##################################################### 

Try this: 

Sub RemovePersonalInfo() 

    ActiveDocument.RemovePersonalInformation = True 

End Sub 

 

##################################################### 



 

Building on Jessica's solution, I had an idea of how you could set things 

up so that you can double-click on the initial bookmarked text and go to 

the first occurrence of a corresponding REF field, then you could 

double-click on that occurrence and go to the next occurrence, and so on. 

 

The main trick is to use MACROBUTTON fields, which launch a macro when you 

double-click on them. You also need to assign a bookmark to each of the REF 

fields so you can tell the macro where to jump to. (I can't see any way of 

avoiding using macros, which is unfortunate as it means you have to save 

the document as a .docm. Or maybe you could store them in an add-in 

template?) 

 

If you assign bookmark names systematically, you can use the same macro in 

every case. 

 

Suppose your first bookmarked text is Text1, which is assigned a bookmark - 

say John. Then your text might look like this 

 

Text1 blah blah Text1 blah blah Text1 blah blah Text1 

 

but if you view the field codes it would look like this 

 

Text1 blah blah { John } blah blah { John } blah blah { John } 

 

(Oh, by the way, I didn't write { REF John } as it's optional to include 

the REF in almost all cases - you can just put the bookmark inside the 

field markers.) 

 

My idea involves the following steps: 

 

1. Replace the initial Text1 with the field 

{ MACROBUTTON GoNext Text1 }, where GoNext is a macro to be defined later. 

When the field codes are turned off, this still reads as Text1, but now 

when you double-click the text it runs the macro GoNext. Make sure the 

bookmark John is now assigned to the range of this field. 

 

2. Replace each of the fields { John } except the last with the field 

{ MACROBUTTON GoNext { John }} 

where you now have the field { John } nested inside the MACROBUTTON field. 

Again when you turn off the field codes it will just display Text1. 

 

3. How you want to handle the last { John } depends what you want to happen 

when you reach the last reference field. I defined another macro NoMore 

that displays a message that you've reached the last one. So then you'd 

replace the final { John } with 

{ MACROBUTTON NoMore { John }}. Alternatively you could again use the 

GoNext but incorporate an error trap that would display a message when it's 

tried to go to a non-existent bookmark. 

 

4. Now select each of the MACROBUTTON fields in turn and insert a bookmark, 

using the names John_01, John_02, etc. (Using two digits allows you to have 

more than 10 reference fields if you need to.) 

 

Now it remains to define the macro GoNext (and NoMore if you want it). 

 

Sub GoNext() 



    Dim MyName As String, NextName As String 

    Dim CurNum As Integer 

 

    If Selection.Range.Bookmarks.Count > 0 Then 

        ' Retrieve the bookmark name you assigned 

        MyName = Selection.Range.Bookmarks(1).Name 

        ' If it ends in _nn increment the terminating number 

        If Right(MyName, 3) Like "_[0-9][0-9]" Then 

            CurNum = CInt(Right(MyName, 2)) 

            NextName = Left(MyName, Len(MyName) - 2) & Format(CurNum + 1, 

"00") 

        Else 

            NextName = MyName & "_01" 

        End If 

        ActiveDocument.Bookmarks(NextName).Range.Select 

    Else 

        Msgbox "No bookmark defined for this field" 

    End If 

End Sub 

 

Sub NoMore() 

    MsgBox "This is the last one" 

End Sub 

 

I have tried this out, but can't claim to have really tested it. 

 

Howard 

 

 

 

 

 

>  Here is a macro that will jump to each cross-ref to the right bookmark 

> and select it.  Not well tested. 

> 

> A refinement would be to let the user enter the bookmark name. 

> 

> A hot refinement would be to find the first field in the selection, and if 

> it is a cross-reference select the cross-reference and then move on click 

> to the next ref in the document to that bookmark.  If it isn't a 

> cross-reference check the next field in the selection and so on. 

> 

> -  Jessica 

> 

> 

> Sub JumpByBkMkRefs() 

> Dim afield As Field 

> Dim bkmkName As String 

> '  replace "ll" in the next line with the name of your bookmark 

> bkmkName = "ll" 

> For Each afield In ActiveDocument.Fields 

>  If afield.Type = wdFieldRef Then 

>    If InStr(1, afield.code, bkmkName, vbTextCompare) > 0 Then 

>      afield.Select 

>   ' The line below shows the page number of the reference.  Comment it 

> back in if you like. 

>     ' MsgBox Selection.Range.Information(wdActiveEndAdjustedPageNumber) 



>    End If 

>  End If 

> Next afield 

> End Sub 

 

 

##################################################### 

 

myColour1 = wdTurquoise 

myColour2 = wdYellow 

thisColour = myColour1 

 

Set rng = ActiveDocument.Content 

With rng.Find 

  .ClearFormatting 

  .Replacement.ClearFormatting 

  .Text = " p." 

  .Font.StrikeThrough = False 

  .Wrap = wdFindContinue 

  .Replacement.Text = " pzFPz" 

  .Forward = True 

  .MatchWildcards = False 

  .MatchWholeWord = False 

  .MatchSoundsLike = False 

  .Execute Replace:=wdReplaceAll 

End With 

With rng.Find 

  .Text = " pp." 

  .Replacement.Text = " ppzFPz" 

  .Execute Replace:=wdReplaceAll 

End With 

With rng.Find 

  .Text = " trans." 

  .Replacement.Text = " transzFPz" 

  .Execute Replace:=wdReplaceAll 

End With 

With rng.Find 

  .Text = " vol." 

  .Replacement.Text = " volzFPz" 

  .Execute Replace:=wdReplaceAll 

End With 

With rng.Find 

  .Text = " Co." 

  .Replacement.Text = " CozFPz" 

  .Execute Replace:=wdReplaceAll 

End With 

With rng.Find 

  .Text = " No." 

  .Replacement.Text = " NozFPz" 

  .Execute Replace:=wdReplaceAll 

End With 

With rng.Find 

  .Text = " ed." 

  .Replacement.Text = " edzFPz" 

  .Execute Replace:=wdReplaceAll 

End With 

With rng.Find 



  .Text = " no." 

  .Replacement.Text = " nozFPz" 

  .Execute Replace:=wdReplaceAll 

End With 

 

 

 

With Selection.Find 

  .ClearFormatting 

  .Highlight = False 

  .Font.StrikeThrough = False 

  .Replacement.ClearFormatting 

  .Text = "[12][0-9]{3}[!0-9]" 

  .Replacement.Text = "" 

  .Forward = True 

  .Wrap = False 

  .MatchWildcards = True 

  .Execute 

End With 

Do While Selection.Find.Found = True 

  Selection.Sentences(1).Select 

  Selection.MoveEnd wdCharacter, -2 

  If thisColour = myColour1 Then 

    thisColour = myColour2 

  Else 

    thisColour = myColour1 

  End If 

  Selection.Range.HighlightColorIndex = thisColour 

  Selection.Collapse wdCollapseEnd 

 

' Go and find the next occurence (if there is one) 

  Selection.Find.Execute 

Loop 

 

With rng.Find 

  .ClearFormatting 

  .Replacement.ClearFormatting 

  .Text = "zFPz" 

  .Replacement.Text = "." 

  .Execute Replace:=wdReplaceAll 

End With 

Exit Sub 

 

 

With rng.Find 

  .Text = " ." 

  .Replacement.Text = " zFPz" 

  .Execute Replace:=wdReplaceAll 

End With 

 

With rng.Find 

  .Text = " ." 

  .Replacement.Text = " zFPz" 

  .Execute Replace:=wdReplaceAll 

End With 

 

With rng.Find 



  .Text = " ." 

  .Replacement.Text = " zFPz" 

  .Execute Replace:=wdReplaceAll 

End With 

 

##################################################### 

Fro: Samantha Hartburn 

 

> Are you aware of code such as the following? It will display a file 

> selection dialog, and return the path and name of the selected file. 

> 

>     Dim sInitialFileName As String 

>     Dim sPath As String 

> 

>     sInitialFileName = "C:\FREdit\" 'The dialog will automatically navigate to this location when it is displayed 

> 

>     'Ask the user to select a .doc file 

>     With Application.FileDialog(msoFileDialogFilePicker) 

>         .InitialFileName = sInitialFileName 

>         .Filters.Clear 

>         .Filters.Add "Word Documents", "*.doc", 1 'You can change this to whatever type of file you want to show 

>         .AllowMultiSelect = False 

>         .Show 

>         If .SelectedItems.Count > 0 Then 

>             sPath = .SelectedItems(1) 'sPath will now be populated with the path and name of the selected file 

>         Else 

>             MsgBox "File selection cancelled", vbInformation, Title:="Process Cancelled" 

>         End If 

>     End With 

> 

> It would mean that you don't need to hardcode a load of document 

> names, and you won't need to change the macro if you add a new FRedit 

> list.Might be of help in the future, but if you already know about it 

> then just ignore me! 

 

 

##################################################### 

 

Sub Test() 

' Version 28.11.12 

' How many the's on average? 

 

  Set rng = ActiveDocument.Content 

  With rng.Find 

    .ClearFormatting 

    .Replacement.ClearFormatting 

    .Text = "\<*\>" 

    .Replacement.Text = "" 

    .MatchWildcards = True 

    .MatchWholeWord = False 

    .MatchSoundsLike = False 

    .Execute Replace:=wdReplaceAll 

  End With 

  With rng.Find 

    .ClearFormatting 

    .Replacement.ClearFormatting 

    .Text = "..." 



    .Replacement.Text = "." 

    .MatchWildcards = False 

    .Execute Replace:=wdReplaceAll 

  End With 

  With rng.Find 

    .ClearFormatting 

    .Replacement.ClearFormatting 

    .Text = ")" 

    .Replacement.Text = "" 

    .MatchWildcards = False 

    .Execute Replace:=wdReplaceAll 

  End With 

  With rng.Find 

    .ClearFormatting 

    .Replacement.ClearFormatting 

    .Text = "(" 

    .Replacement.Text = "" 

    .MatchWildcards = False 

    .Execute Replace:=wdReplaceAll 

  End With 

  With rng.Find 

    .ClearFormatting 

    .Replacement.ClearFormatting 

    .Text = """" 

    .Replacement.Text = " " 

    .MatchWildcards = False 

    .Execute Replace:=wdReplaceAll 

  End With 

totWords = 0 

 

For Each sn In ActiveDocument.Sentences 

  mySnt = sn 

'             sn.Select 

  sentWords = sn.Words.Count 

  If sentWords > 40 Then 

    For Each wd In sn.Words 

      If LCase(Trim(wd)) = "the" Then theCount = theCount + 1 

    Next wd 

    totWords = totWords + sentWords 

    StatusBar = (theCount * 100 / totWords) 

  End If 

Next sn 

MsgBox (theCount * 100 / totWords) 

End Sub 

 

##################################################### 

Splitting a comma-separated list? 

 

You could try the Mark 2 version. This prompts you for the IDs whose 

records you want deleted - you type them in the input box, separated by 

commas. 

 

Sub RemoveSpecifiedRowsMk2() 

    Dim tbl As Table 

    Dim r As Row 

    Dim i As Integer 

    Dim InputStr As String 



    Dim IDs As Variant 

 

    InputStr = InputBox(prompt:="Type the IDs for the records you wish to 

delete, " & _ 

                "separated by commas", Title:="Remove specified 

rows") 

    If InputStr = "" Then Exit Sub 

 

    IDs = Split(InputStr, ",") 

 

    For Each tbl In ActiveDocument.Tables 

        For Each r In tbl.Rows 

            For i = 0 To UBound(IDs) 

                If InStr(r.Cells(1).Range.Text, IDs(i)) > 0 Then 

                    r.Delete 

                    Exit For 

                End If 

            Next 

        Next 

    Next 

End Sub 

 

 

 

##################################################### 

 

 

Sub SpellAlyseOld() 

' Version 30.04.12 

' Spellcheck system 

 

checkForeign1 = False 

foreignLanguage1 = wdEnglishUS 

 

checkForeign2 = False 

foreignLanguage2 = wdFrench 

 

compareProperNouns = True 

doCountProperNouns = True 

 

makeFReditList = False 

 

 

' General options 

myFile = "zzSwitchList" 

 

minLengthProper = 4 

minLengthSpell = 3 

 

properNounColour = wdNoHighlight 

properNounColour = wdGray25 

 

mainColour = wdBrightGreen 

 

foreign1Colour = wdTurquoise 

foreign2Colour = wdPink 

 



' Check file for alternative variable settings 

Set mainDoc = ActiveDocument 

For Each myWnd In Windows 

  thisFileName = myWnd.Document.Name 

  thisFileName = Replace(thisFileName, ".docx", "") 

  thisFileName = Replace(thisFileName, ".doc", "") 

  If thisFileName = myFile Then 

    myWnd.Activate 

    allText = ActiveDocument.Content 

 

    myVariable = "checkForeign1 = " 

    myPos = InStr(allText, myVariable) 

    If myPos > 0 Then 

      If Mid(allText, myPos + Len(myVariable), 4) = "True" Then 

        checkForeign1 = True 

      Else 

        checkForeign1 = False 

      End If 

    End If 

 

    myVariable = "foreignLanguage1 = " 

    myPos = InStr(allText, myVariable) 

    If myPos > 0 Then 

      myData = Mid(allText, myPos + Len(myVariable)) 

      endPos = InStr(myData, Chr(13)) - 1 

      If endPos >= 0 Then myData = Left(myData, endPos) 

 

      Select Case myData 

        Case "wdEnglishUS": foreignLanguage1 = wdEnglishUS 

        Case "wdEnglishUK": foreignLanguage1 = wdEnglishUK 

        Case "wdFrench": foreignLanguage1 = wdFrench 

        Case "wdGerman": foreignLanguage1 = wdGerman 

        Case Else: MsgBox "Unknown language. Please contact Paul Bev." 

      End Select 

 

    End If 

 

    myVariable = "checkForeign2 = " 

    myPos = InStr(allText, myVariable) 

    If myPos > 0 Then 

      If Mid(allText, myPos + Len(myVariable), 4) = "True" Then 

        checkForeign2 = True 

      Else 

        checkForeign2 = False 

      End If 

    End If 

 

    myVariable = "foreignLanguage2 = " 

    myPos = InStr(allText, myVariable) 

    If myPos > 0 Then 

      myData = Mid(allText, myPos + Len(myVariable)) 

      endPos = InStr(myData, Chr(13)) - 1 

      If endPos >= 0 Then myData = Left(myData, endPos) 

      Select Case myData 

        Case "wdEnglishUS": foreignLanguage2 = wdEnglishUS 

        Case "wdEnglishUK": foreignLanguage2 = wdEnglishUK 

        Case "wdFrench": foreignLanguage2 = wdFrench 



        Case "wdGerman": foreignLanguage2 = wdGerman 

        Case Else: MsgBox "Unknown language. Please contact Paul Bev." 

                   Exit Sub 

      End Select 

    End If 

 

    myVariable = "compareProperNouns = " 

    myPos = InStr(allText, myVariable) 

    If myPos > 0 Then 

      If Mid(allText, myPos + Len(myVariable), 4) = "True" Then 

        compareProperNouns = True 

      Else 

        compareProperNouns = False 

      End If 

    End If 

 

    myVariable = "doCountProperNouns = " 

    myPos = InStr(allText, myVariable) 

    If myPos > 0 Then 

      If Mid(allText, myPos + Len(myVariable), 4) = "True" Then 

        doCountProperNouns = True 

      Else 

        doCountProperNouns = False 

      End If 

    End If 

 

    myVariable = "makeFReditList = " 

    myPos = InStr(allText, myVariable) 

    If myPos > 0 Then 

      If Mid(allText, myPos + Len(myVariable), 4) = "True" Then 

        makeFReditList = True 

      Else 

        makeFReditList = False 

      End If 

    End If 

  End If 

Next myWnd 

 

' Start of main program 

mainDoc.Activate 

If Selection.LanguageID = wdEnglishUK Then 

  mainLanguage = wdEnglishUK: myLang = "UK" 

Else 

  mainLanguage = wdEnglishUS: myLang = "US" 

End If 

 

If compareProperNouns = True Then myPro = "(Proper noun list: YES)" _ 

     Else: myPro = "(Proper noun list: NO)" 

CR2 = vbCrLf & vbCrLf 

myResponse = MsgBox("Main language = " & myLang & CR2 & myPro, _ 

       vbQuestion + vbYesNoCancel, "SpellAlyse") 

If myResponse <> vbYes Then Exit Sub 

 

' To measure the time taken 

timeStart = Timer 

 

' Check that tracking is off! 



ActiveDocument.TrackRevisions = False 

allPropNouns = vbCrLf & vbCrLf 

 

' Blank off all apostrophe-s 

Set rng = ActiveDocument.Range 

With rng.Find 

  .ClearFormatting 

  .Replacement.ClearFormatting 

  .Text = ChrW(8217) & "s" 

  .MatchWildcards = False 

  .MatchCase = True 

  .Replacement.Text = " zczc" 

  .Execute Replace:=wdReplaceAll 

End With 

 

' Spellcheck the endnotes 

myjump = 100 

If ActiveDocument.Endnotes.Count > 0 Then 

  Set rng = ActiveDocument.StoryRanges(wdEndnotesStory) 

  countWds = 0 

  For Each wd In rng.Words 

    If countWds Mod myjump = 1 Then StatusBar = "Checking words in endnotes: " & Str(Int(countWds / myjump) 

* myjump) 

    countWds = countWds + 1 

    If Len(Trim(wd)) >= minLengthSpell Then 

      If Application.CheckSpelling(wd, MainDictionary:=Languages(mainLanguage).NameLocal) = False _ 

           And Trim(wd) <> "zczc" And LCase(wd) <> UCase(wd) Then 

        wd.HighlightColorIndex = mainColour 

        If checkForeign2 = True Then 

          If Application.CheckSpelling(wd, MainDictionary:=Languages(foreignLanguage2).NameLocal) _ 

               = True Then wd.HighlightColorIndex = foreign2Colour 

        End If 

        If checkForeign1 = True Then 

          If Application.CheckSpelling(wd, MainDictionary:=Languages(foreignLanguage1).NameLocal) _ 

               = True Then wd.HighlightColorIndex = foreign1Colour 

        End If 

      ' But might it be a proper noun? 

        maybeProper = False 

      ' If the first letter is a cap, it may be a PN 

        If Asc(wd) > 64 And Asc(wd) < 91 Then 

          maybeProper = True 

        ' But if the second is uppercase, it's probably not 

          If Asc(Mid(wd, 2, 1)) < 96 Then maybeProper = False 

        ' Check if it's a sentence-start word 

          thisWord = Trim(wd) 

          wdStart = wd.Start 

          wdEnd = wd.End 

        ' Check the previous char 

          wd.Start = wd.Start - 1 

        ' If it's the start of a new line or after a tab, 

        ' it may not be a PN 

          If Asc(wd) = 13 Or Asc(wd) = 9 Then maybeProper = False 

        ' check the three chars before that 

          wd.Start = wd.Start - 1 

          wd.End = wd.Start + 1 

          minusTwo = wd 

          wd.Start = wd.Start - 1 



          wd.End = wd.Start + 1 

          minusThree = wd 

          wd.Start = wd.Start - 1 

          wd.End = wd.Start + 1 

          minusFour = wd 

        ' If minusTwo is not a letter 

          If LCase(minusTwo) = UCase(minusTwo) Then 

            maybeProper = False 

            If minusTwo = "," Or minusTwo = ";" Then maybeProper = True 

          ' Check for, e.g. P. Funnyname 

            If minusTwo = "." And UCase(minusThree) = minusThree _ 

                 And minusFour = " " Then maybeProper = True 

          ' Check for, e.g. P Funnyname 

            If UCase(minusTwo) = minusTwo And minusThree = " " Then _ 

                 maybeProper = True 

          End If 

          If maybeProper = True And Len(thisWord) >= minLengthProper Then 

            Set rng2 = ActiveDocument.StoryRanges(wdEndnotesStory) 

            rng2.Start = wdStart 

            rng2.End = wdEnd 

            rng2.HighlightColorIndex = properNounColour 

            allPropNouns = allPropNouns & thisWord & vbCrLf 

          End If 

        End If 

      End If 

    End If 

  Next wd 

End If 

 

' Spellcheck the footnotes 

myjump = 100 

If ActiveDocument.Footnotes.Count > 0 Then 

  Set rng = ActiveDocument.StoryRanges(wdFootnotesStory) 

  countWds = 0 

  For Each wd In rng.Words 

    If countWds Mod myjump = 1 Then StatusBar = "Checking words in footnotes: " & Str(Int(countWds / myjump) 

* myjump) 

    countWds = countWds + 1 

    If Len(Trim(wd)) >= minLengthSpell Then 

      If Application.CheckSpelling(wd, MainDictionary:=Languages(mainLanguage).NameLocal) = False _ 

           And Trim(wd) <> "zczc" And LCase(wd) <> UCase(wd) Then 

        wd.HighlightColorIndex = mainColour 

        If checkForeign2 = True Then 

          If Application.CheckSpelling(wd, MainDictionary:=Languages(foreignLanguage2).NameLocal) _ 

               = True Then wd.HighlightColorIndex = foreign2Colour 

        End If 

        If checkForeign1 = True Then 

          If Application.CheckSpelling(wd, MainDictionary:=Languages(foreignLanguage1).NameLocal) _ 

               = True Then wd.HighlightColorIndex = foreign1Colour 

        End If 

      ' But might it be a proper noun? 

        maybeProper = False 

      ' If the first letter is a cap, it may be a PN 

        If Asc(wd) > 64 And Asc(wd) < 91 Then 

          maybeProper = True 

        ' But if the second is uppercase, it's probably not 

          If Asc(Mid(wd, 2, 1)) < 96 Then maybeProper = False 



        ' Check if it's a sentence-start word 

          thisWord = Trim(wd) 

          wdStart = wd.Start 

          wdEnd = wd.End 

        ' Check the previous char 

          wd.Start = wd.Start - 1 

        ' If it's the start of a new line or after a tab, 

        ' it may not be a PN 

          If Asc(wd) = 13 Or Asc(wd) = 9 Then maybeProper = False 

        ' check the three chars before that 

          wd.Start = wd.Start - 1 

          wd.End = wd.Start + 1 

          minusTwo = wd 

          wd.Start = wd.Start - 1 

          wd.End = wd.Start + 1 

          minusThree = wd 

          wd.Start = wd.Start - 1 

          wd.End = wd.Start + 1 

          minusFour = wd 

        ' If minusTwo is not a letter 

          If LCase(minusTwo) = UCase(minusTwo) Then 

            maybeProper = False 

            If minusTwo = "," Or minusTwo = ";" Then maybeProper = True 

          ' Check for, e.g. P. Funnyname 

            If minusTwo = "." And UCase(minusThree) = minusThree _ 

                 And minusFour = " " Then maybeProper = True 

          ' Check for, e.g. P Funnyname 

            If UCase(minusTwo) = minusTwo And minusThree = " " Then _ 

                 maybeProper = True 

          End If 

          If maybeProper = True And Len(thisWord) >= minLengthProper Then 

            Set rng2 = ActiveDocument.StoryRanges(wdFootnotesStory) 

            rng2.Start = wdStart 

            rng2.End = wdEnd 

            rng2.HighlightColorIndex = properNounColour 

            allPropNouns = allPropNouns & thisWord & vbCrLf 

          End If 

        End If 

      End If 

    End If 

  Next wd 

End If 

 

' Spellcheck the main text 

i = ActiveDocument.Words.Count 

For Each wd In ActiveDocument.Words 

  If Len(Trim(wd)) >= minLengthSpell Then 

    If Application.CheckSpelling(wd, MainDictionary:=Languages(mainLanguage).NameLocal) = False _ 

         And Trim(wd) <> "zczc" And LCase(wd) <> UCase(wd) Then 

      wd.HighlightColorIndex = mainColour 

      If checkForeign2 = True Then 

        If Application.CheckSpelling(wd, MainDictionary:=Languages(foreignLanguage2).NameLocal) _ 

             = True Then wd.HighlightColorIndex = foreign2Colour 

      End If 

      If checkForeign1 = True Then 

        If Application.CheckSpelling(wd, MainDictionary:=Languages(foreignLanguage1).NameLocal) _ 

             = True Then wd.HighlightColorIndex = foreign1Colour 



      End If 

    ' But might it be a proper noun? 

      maybeProper = False 

    ' If the first letter is a cap, it may be a PN 

      If Asc(wd) > 64 And Asc(wd) < 91 Then 

        maybeProper = True 

      ' But if the second is uppercase, it's probably not 

        If Asc(Mid(wd, 2, 1)) < 91 Then maybeProper = False 

      ' Check if it's a sentence-start word 

        thisWord = Trim(wd) 

        wdStart = wd.Start 

        wdEnd = wd.End 

      ' Check the previous char 

        wd.Start = wd.Start - 1 

      ' If it's the start of a new line or after a tab, 

      ' it may not be a PN 

        If Asc(wd) = 13 Or Asc(wd) = 9 Then maybeProper = False 

      ' check the three chars before that 

        wd.Start = wd.Start - 1 

        wd.End = wd.Start + 1 

        minusTwo = wd 

        wd.Start = wd.Start - 1 

        wd.End = wd.Start + 1 

        minusThree = wd 

        wd.Start = wd.Start - 1 

        wd.End = wd.Start + 1 

        minusFour = wd 

      ' If minusTwo is not a letter 

        If LCase(minusTwo) = UCase(minusTwo) Then 

          maybeProper = False 

          If minusTwo = "," Or minusTwo = ";" Then maybeProper = True 

        ' Check for, e.g. P. Funnyname 

          If minusTwo = "." And UCase(minusThree) = minusThree _ 

               And minusFour = " " Then maybeProper = True 

        ' Check for, e.g. P Funnyname 

          If UCase(minusTwo) = minusTwo And minusThree = " " Then _ 

               maybeProper = True 

        End If 

        If maybeProper = True And Len(thisWord) >= minLengthProper Then 

          Selection.Start = wdStart 

          Selection.End = wdEnd 

          Selection.Range.HighlightColorIndex = properNounColour 

          allPropNouns = allPropNouns & thisWord & vbCrLf 

        End If 

      End If 

    End If 

  End If 

  i = i - 1 

  If i Mod 100 = 0 Then StatusBar = "Spellchecking. To go: " & Str(i) 

Next wd 

 

Selection.HomeKey Unit:=wdStory 

If compareProperNouns = True Then 

  ' Now compare the proper nouns 

  Documents.Add 

  Selection.TypeText Text:=allPropNouns 

 



  ' Remove superfluous apostrophes 

  Set rng = ActiveDocument.Range 

  With rng.Find 

    .ClearFormatting 

    .Replacement.ClearFormatting 

    .Text = ChrW(8217) & "^p" 

    .MatchWildcards = False 

    .Replacement.Text = "^p" 

    .Execute Replace:=wdReplaceAll 

  End With 

 

  ' Sort the proper nouns and remove duplicates 

  Selection.Sort ExcludeHeader:=False, CaseSensitive:=True, FieldNumber:="Paragraphs" 

  For i = ActiveDocument.Paragraphs.Count To 2 Step -1 

    Set rng1 = ActiveDocument.Paragraphs(i).Range 

    Set rng2 = ActiveDocument.Paragraphs(i - 1).Range 

    If rng1 = rng2 Then rng1.Delete 

  Next i 

 

  ' Collect all proper nouns into an array 

  totWords = ActiveDocument.Words.Count 

  ReDim myWords(totWords) 

  j = 0 

  For i = 1 To totWords 

    wrd = Trim(ActiveDocument.Words(i)) 

    gotFunnies = False 

    If Len(wrd) < minLengthProper Then 

      gotFunnies = True 

    Else 

      For k = 1 To Len(wrd) 

        myChar = Mid(wrd, k, 1) 

        If Asc(myChar) > 127 Then gotFunnies = True: Exit For 

        If AscW(myChar) > 127 Then gotFunnies = True: Exit For 

      Next k 

    End If 

    If gotFunnies = False Then 

      j = j + 1 

      myWords(j) = wrd 

    End If 

  Next 

  totWords = j 

  ActiveDocument.Close SaveChanges:=False 

  mainDoc.Activate 

  Selection.HomeKey Unit:=wdStory 

 

  ' Now collect the similar words 

  duplicateList = "" 

  For i = 1 To totWords 

    gotOne = False 

    StatusBar = "Comparing proper nouns: " & Str(totWords - i) 

    Set rng = ActiveDocument.Content 

    ' Check if this word has a sounds-like word anywhere 

    mwd = myWords(i) 

    Do 

      With rng.Find 

        .ClearFormatting 

        .Replacement.ClearFormatting 



        .Text = mwd 

        .Wrap = False 

        .Replacement.Text = "" 

        .MatchSoundsLike = True 

        .Forward = True 

        .MatchWildcards = False 

        .Execute 

      End With 

    ' But make sure that the sounds-like word isn't all 

    ' lower case, and isn't a very short word. 

      If rng.Find.Found = True Then 

        fnd = rng 

        rng.Start = rng.End 

        rng.End = rng.End + 1 

        abit = rng 

        If Len(abit) > 0 Then aa = Asc(abit) 

 

      ' But we don't want it if it's the same word 

        If fnd = mwd Then GoTo no 

      ' or if it's already on the list 

        If InStr(duplicateList, fnd & "!") > 0 Then GoTo no 

      ' or is it's all lcase 

        If LCase(fnd) = fnd Then GoTo no 

      ' or if it's a very short word 

        If Len(fnd) < minLengthProper Then GoTo no 

      ' or if it's a very different length 

        If Abs(Len(fnd) - Len(mwd)) > 3 Then GoTo no 

      ' or if it's part of a longer word 

        If Asc(aa) < 123 And Asc(aa) > 96 Then GoTo no 

        gotOne = True 

        duplicateList = duplicateList & fnd & "!" 

no: 

        stopNow = False 

      Else 

        stopNow = True 

      End If 

      rng.Start = rng.End 

    Loop Until stopNow = True 

    If gotOne = True Then duplicateList = duplicateList & mwd & "!" & vbCrLf 

  Next i 

  StatusBar = "" 

  Selection.Find.MatchSoundsLike = False 

 

  ' Put the list in the text file 

  Selection.EndKey Unit:=wdStory 

  Selection.TypeText Text:=vbCrLf & vbCrLf & "Possible proper noun pairs:" _ 

       & vbCrLf & vbCrLf 

  backHere = Selection.Start 

  newList = "" 

  thisMany = Len(duplicateList) 

  For myCount = 1 To thisMany 

    myChar = Mid(duplicateList, myCount, 1) 

    If myChar = "!" Then myChar = vbCrLf 

    newList = newList & myChar 

  Next myCount 

  Selection.InsertAfter Text:=newList 

 



  If doCountProperNouns = True Then 

    Do 

      ' select word 

      Selection.Words(1).Select 

      thisWord = Selection 

      thisMany = 0 

      If Len(thisWord) > 2 Then 

        Set rng = ActiveDocument.Range 

        With rng.Find 

          .ClearFormatting 

          .MatchCase = True 

          .MatchWholeWord = True 

          .Text = thisWord 

          .Execute 

        End With 

        Do While rng.Find.Found = True And rng.Start <= backHere 

          thisMany = thisMany + 1 

          rng.Find.Execute 

          rng.Collapse wdCollapseEnd 

        Loop 

        num = Trim(Str(thisMany)) 

        Selection.Start = Selection.End 

        Selection.TypeText Text:=vbTab & Trim(Str(num)) 

        Selection.MoveRight Unit:=wdCharacter, Count:=1 

        ' Move down a line 

        If Asc(Selection) = 13 Then Selection.MoveRight Unit:=wdCharacter, Count:=1 

      End If 

    Loop Until Asc(Selection) = 13 

  End If 

  thisMany = -1 

End If 

 

If makeFReditList = True Then 

  allList = "" 

  ' List words in endnotes 

  If ActiveDocument.Endnotes.Count > 0 Then 

    Set rng = ActiveDocument.StoryRanges(wdEndnotesStory) 

    i = ActiveDocument.StoryRanges(wdEndnotesStory).Words.Count 

    For Each wd In ActiveDocument.StoryRanges(wdEndnotesStory).Words 

      rng.Start = wd.Start 

      rng.End = wd.Start + 1 

      If rng.HighlightColorIndex = mainColour Then 

        theWord = Trim(wd) 

        If Right(theWord, 1) = ChrW(8217) Then theWord = Left(theWord, Len(theWord) - 1) 

        allList = allList & "m" & theWord & vbCrLf 

      End If 

      If rng.HighlightColorIndex = foreign1Colour Then 

        theWord = Trim(wd) 

        If Right(theWord, 1) = ChrW(8217) Then theWord = Left(theWord, Len(theWord) - 1) 

        allList = allList & "y" & theWord & vbCrLf 

      End If 

      If rng.HighlightColorIndex = foreign2Colour Then 

        theWord = Trim(wd) 

        If Right(theWord, 1) = ChrW(8217) Then theWord = Left(theWord, Len(theWord) - 1) 

        allList = allList & "z" & theWord & vbCrLf 

      End If 

      i = i - 1 



      If i Mod 10 = 0 Then StatusBar = "Endnote word list. To go: " & Str(i) 

    Next wd 

  End If 

 

  ' List words in footnotes 

  If ActiveDocument.Footnotes.Count > 0 Then 

    Set rng = ActiveDocument.StoryRanges(wdFootnotesStory) 

    i = ActiveDocument.StoryRanges(wdFootnotesStory).Words.Count 

    For Each wd In ActiveDocument.StoryRanges(wdFootnotesStory).Words 

      rng.Start = wd.Start 

      rng.End = wd.Start + 1 

      If rng.HighlightColorIndex = mainColour Then 

        theWord = Trim(wd) 

        If Right(theWord, 1) = ChrW(8217) Then theWord = Left(theWord, Len(theWord) - 1) 

        allList = allList & "m" & theWord & vbCrLf 

      End If 

      If rng.HighlightColorIndex = foreign1Colour Then 

        theWord = Trim(wd) 

        If Right(theWord, 1) = ChrW(8217) Then theWord = Left(theWord, Len(theWord) - 1) 

        allList = allList & "y" & theWord & vbCrLf 

      End If 

      If rng.HighlightColorIndex = foreign2Colour Then 

        theWord = Trim(wd) 

        If Right(theWord, 1) = ChrW(8217) Then theWord = Left(theWord, Len(theWord) - 1) 

        allList = allList & "z" & theWord & vbCrLf 

      End If 

      i = i - 1 

      If i Mod 10 = 0 Then StatusBar = "Footnote word list. To go: " & Str(i) 

    Next wd 

  End If 

 

  ' List words in main text 

  i = ActiveDocument.Words.Count 

  Set rng = ActiveDocument.Range 

  For Each wd In ActiveDocument.Words 

    rng.Start = wd.Start 

    rng.End = wd.Start + 1 

    If rng.HighlightColorIndex = mainColour Then 

      theWord = Trim(wd) 

      If Right(theWord, 1) = ChrW(8217) Then theWord = Left(theWord, Len(theWord) - 1) 

      allList = allList & "m" & theWord & vbCrLf 

    End If 

    If rng.HighlightColorIndex = foreign1Colour Then 

      theWord = Trim(wd) 

      If Right(theWord, 1) = ChrW(8217) Then theWord = Left(theWord, Len(theWord) - 1) 

      allList = allList & "y" & theWord & vbCrLf 

    End If 

    If rng.HighlightColorIndex = foreign2Colour Then 

      theWord = Trim(wd) 

      If Right(theWord, 1) = ChrW(8217) Then theWord = Left(theWord, Len(theWord) - 1) 

      allList = allList & "z" & theWord & vbCrLf 

    End If 

    i = i - 1 

    If i Mod 100 = 0 Then StatusBar = "Constructing FRedit list. To go: " & Str(i) 

  Next wd 

 

  Documents.Add 



  Selection.TypeText Text:=allList 

 

  Selection.WholeStory 

  ' Sort the list and remove duplicates 

  Selection.Sort ExcludeHeader:=False, CaseSensitive:=True, FieldNumber:="Paragraphs" 

  For i = ActiveDocument.Paragraphs.Count To 2 Step -1 

    Set rng1 = ActiveDocument.Paragraphs(i).Range 

    Set rng2 = ActiveDocument.Paragraphs(i - 1).Range 

    If rng1 = rng2 Then rng1.Delete 

  Next i 

 

  Selection.HomeKey Unit:=wdStory 

  For Each myPara In ActiveDocument.Paragraphs 

    If Asc(myPara) = Asc("m") Then myPara.Range.HighlightColorIndex = mainColour 

    If Asc(myPara) = Asc("y") Then myPara.Range.HighlightColorIndex = foreign1Colour 

    If Asc(myPara) = Asc("z") Then myPara.Range.HighlightColorIndex = foreign2Colour 

  Next myPara 

  Set rng = ActiveDocument.Range 

  With rng.Find 

    .ClearFormatting 

    .Replacement.ClearFormatting 

    .Text = "^p^$" 

    .Replacement.Text = "^p" 

    .Replacement.Highlight = False 

    .Execute Replace:=wdReplaceAll 

  End With 

End If 

 

 

' restore all apostrophe-s 

Set rng = ActiveDocument.Range 

With rng.Find 

  .ClearFormatting 

  .Replacement.ClearFormatting 

  .Text = " zczc" 

  .Replacement.Text = ChrW(8217) & "s" 

  .Replacement.Highlight = False 

  .MatchCase = True 

  .MatchWildcards = False 

  .Execute Replace:=wdReplaceAll 

End With 

 

Selection.End = backHere 

Selection.Start = backHere 

 

MsgBox ((Int(10 * (Timer - timeStart) / 60) / 10) & "  minutes") 

StatusBar = "" 

End Sub 

 

 

##################################################### 

Yes, Word can check for passive sentences. 

 

See http://www.ehow.com/how_2273684_change-microsoft-word-settings-check.html 

 

 

##################################################### 



 

To: Paul Beverley <paul@archivepub.co.uk> 

Date: Fri, 25 May 2012 08:09:24 -0400 

Subject: macros to change a selected European-format date into a US- 

format 

 date IN TEXT 

 

Hi, Paul. 

 

Someone asked me for such a macro yesterday and it turned out to be 

easy.  Put 'em in the book if you want to. 

 

And yes, if the dates were in fields or something it would be 

different.  But this author had gazillions of them in running text. 

 

cDate turns a string into a date, and Format changes date formats. 

Using range.text puts it back into string/text form. 

 

Play with the date format spec in quotes and you get other formats 

including dashes or slashes or a leading 0 or the day of the week. 

 

Do you know of a faster or slicker way to do this? 

 

-  Jessica 

 

Sub MakeEuropean() 

  ' turn a date that is selected into a European date.  Beeps if there is an error. 

  On Error GoTo oops 

    Selection.Range.Text = Format(CDate(Selection.Range.Text), "d mmmm yyyy") 

    End 

oops: 

  Beep 

End Sub 

 

Sub MakeAmerican() 

 ' turn a date that is selected into a US date.  Beeps if there is an error. 

 On Error GoTo oops 

   Selection.Range.Text = Format(CDate(Selection.Range.Text), "mmmm d, yyyy") 

End 

oops: 

  Beep 

End Sub 

 

 

 

----- 

No virus found in this message. 

Checked by AVG - www.avg.com 

Version: 2012.0.2176 / Virus Database: 2425/5020 - Release Date: 05/24/12 

 

##################################################### 

Take a look at this:  http://msdn.microsoft.com/en-us/library/dd723636(v=office.12) 

 

if you have time.  There are other articles in the same section of MSDN that have interesting examples, too. 

 

 

##################################################### 



 

Sub LongSentenceAndParagraphHighlighter() 

' Version 19.05.12 

' Highlight all sentences more than a certain length 

 

paraMaxLength = 120 

sentMaxLength = 80 

 

For Each myPara In ActiveDocument.Paragraphs 

  If myPara.Range.Words.Count > paraMaxLength Then 

    myPara.Range.HighlightColorIndex = wdYellow 

    myPara.Range.Select 

  End If 

Next 

 

For Each mySent In ActiveDocument.Sentences 

  If mySent.Words.Count > sentMaxLength Then 

    mySent.HighlightColorIndex = wdRed 

    mySent.Select 

  End If 

Next 

 

End Sub 

 

 

##################################################### 

' Version 18.05.12 

' Collect text of one style 

 

thisStyle = Selection.Style 

Selection.EndKey Unit:=wdStory 

numParas = ActiveDocument.Paragraphs.Count 

For i = 1 To numParas 

  If ActiveDocument.Paragraphs(i).Style = thisStyle Then 

    ActiveDocument.Paragraphs(i).Range.Copy 

    Selection.Paste 

  End If 

  iLeft = numParas - i 

  If iLeft Mod 50 = 0 Then StatusBar = "Paras left =" & Str(iLeft) 

Next i 

Beep 

 

Exit Sub 

 

thisStyle = Selection.Style 

Dim myText(1000) 

For Each myPara In ActiveDocument.Paragraphs 

  If myPara.Range.Style = thisStyle Then 

  i = i + 1 

  myText(i) = myPara.Range 

  End If 

Next myPara 

iMax = i 

 

Selection.EndKey Unit:=wdStory 

 

Selection.TypeText Text:=vbCrLf & vbCrLf 



For i = 1 To iMax 

  Selection.TypeText myText(i) 

Next 

 

 

 

##################################################### 

 

 

Sub IStoIZ() 

' Version 14.03.12 

' Correct file to give -iz, -yz spellings 

 

doExtraWords = False 

szExceptions = "analys,reanalys,overanalys,catalys,dialys," 

szExceptions = szExceptions & "electrolys,paralys,hydrolys" 

 

changeColour = wdGray25 

nonoStyles = "DisplayQuote,ReferenceList" 

' Either open the file automatically... 

loadFileAutomatically = True 

 

' from this address 

myFile = "C:\Program Files\VirtualAcorn\VirtualRPC-SA" _ 

     & "\HardDisc4\MyFiles2\WIP\zzzTheBook\aFRedit\IS_words.doc" 

' myFile = "C:\Documents and Settings\Paul\My Documents\IS_words.doc" 

 

' or open this file first... 

exceptionFile = "IS_words" 

 

myResponse = MsgBox("IS to IZ: Edit the text?", vbQuestion + vbYesNoCancel) 

If myResponse = vbCancel Then Exit Sub 

 

 

 

Set mainDoc = ActiveDocument 

If loadFileAutomatically = True Then 

  Documents.Open myFile 

Else 

  gottadoc = False 

  For Each myDoc In Documents 

    If InStr(myDoc.Name, exceptionFile) > 0 Then 

      myDoc.Activate 

      gottadoc = True 

      Exit For 

    End If 

  Next myDoc 

 

  If gottadoc = False Then 

    MsgBox ("Please load the IS file.") 

    Exit Sub 

  End If 

End If 

 

 

timeStart = Timer 

 



allWords = "!" 

For Each wd In ActiveDocument.Words 

  thisWord = Trim(wd) 

  If Asc(thisWord) > 32 Then allWords = allWords & thisWord & "!" 

Next wd 

allAlphas = "" 

For i = 192 To 255 

  If i <> 215 And i <> 247 Then allAlphas = allAlphas & ChrW(i) 

Next i 

For i = 65 To 90 

  allAlphas = allAlphas & ChrW(i) 

Next i 

For i = 97 To 122 

  allAlphas = allAlphas & ChrW(i) 

Next i 

 

mainDoc.Activate 

myTrack = ActiveDocument.TrackRevisions 

If myResponse = vbNo Then ActiveDocument.TrackRevisions = False 

totChanges = 0 

For hit = 1 To 3 

  If hit = 1 Then 

    thisMany = ActiveDocument.Endnotes.Count 

    If thisMany > 0 Then 

      Set rng = ActiveDocument.StoryRanges(wdEndnotesStory) 

      Set rng1 = ActiveDocument.StoryRanges(wdEndnotesStory) 

    End If 

  End If 

  If hit = 2 Then 

    thisMany = ActiveDocument.Footnotes.Count 

    If thisMany > 0 Then 

      Set rng = ActiveDocument.StoryRanges(wdFootnotesStory) 

      Set rng1 = ActiveDocument.StoryRanges(wdFootnotesStory) 

    End If 

  End If 

  If hit = 3 Then 

    Set rng = ActiveDocument.Content 

    Set rng1 = ActiveDocument.Content 

    thisMany = 1 

  End If 

 

  If thisMany > 0 Then 

    theEnd = rng.End 

    Do 

      With rng.Find 

        .ClearFormatting 

        .Replacement.ClearFormatting 

        .Text = "[iy]s[iea]" 

        .Wrap = False 

        .Replacement.Text = "" 

        .Forward = True 

        .MatchWildcards = True 

        .Execute 

      End With 

 

      If rng.Find.Found = True Then 

      ' Find whole word 



        rng1.Start = rng.Start 

        rng1.End = rng.End 

        rng1.MoveEndWhile cset:=allAlphas, Count:=wdForward 

        rng1.MoveStartWhile cset:=allAlphas, Count:=wdBackward 

        fullWord = rng1 

 

        changeIt = True 

        ' But don't make the change if... 

        thisStyle = rng.Style 

        If InStr(nonoStyles, thisStyle) > 0 Then changeIt = False 

        If rng.Font.StrikeThrough = True Then changeIt = False 

        ' If -is- is near the beginning of the word... 

        If rng.Start - rng1.Start < 4 Then 

          ' look for an -is- later in the word 

          rng.Start = rng1.Start + 4 

          rng.End = rng.Start 

          With rng.Find 

            .ClearFormatting 

            .Replacement.ClearFormatting 

            .Text = "is[iea]" 

            .Wrap = False 

            .Replacement.Text = "" 

            .Forward = True 

            .MatchWildcards = True 

            .Execute 

          End With 

          If rng.Find.Found = False Or rng.Start > rng1.End Then changeIt = False 

        End If 

      ' Check that it's not in the list of s's 

        If InStr(allWords, "!" & LCase(fullWord) & "!") > 0 Then changeIt = False 

        If InStr(szExceptions, Left(LCase(fullWord), 6)) > 0 And rng1.LanguageID = wdEnglishUK _ 

             Then changeIt = False 

        If changeIt = True Then 

        ' then change it to a z 

          If myResponse = vbYes Then 

            opposite = Replace(rng, "s", "z") 

            rng.Delete 

            rng.InsertAfter Text:=opposite 

            If ActiveDocument.TrackRevisions = True Then 

              rng1.End = rng.Start + 3 

            Else 

              rng1.End = rng.Start 

            End If 

          End If 

          rng1.HighlightColorIndex = changeColour 

          totChanges = totChanges + 1 

        End If 

        stopNow = False 

      Else 

        stopNow = True 

      End If 

      rng.Start = rng1.End 

      rng.End = rng1.End 

      i = theEnd - rng.End 

      If (i Mod 100) = 0 And hit = 3 Then StatusBar = "To go: " & Str(i) 

    Loop Until stopNow = True 

  End If 



Next hit 

 

StatusBar = "Finished!" 

 

' Now see if there are any replace/mark word pairs 

lastWords = Replace(allWords, "!|!", "|") 

i = InStr(lastWords, "|") 

 

' If there are some and we want to use them, do so 

If doExtraWords = True And i > 0 Then 

  oldColour = Options.DefaultHighlightColorIndex 

  Options.DefaultHighlightColorIndex = changeColour 

 

  oldFind = Selection.Find.Text 

  oldReplace = Selection.Find.Replacement.Text 

 

' Look back to find the beginning of the word pairs 

  Do 

    i = i - 1 

  Loop Until Mid(lastWords, i, 1) = "!" 

  lastWords = Right(lastWords, Len(lastWords) - i) 

  Do 

    lenWd = InStr(lastWords, "|") - 1 

    If lenWd > 0 Then oldWord = Left(lastWords, lenWd) 

    If lenWd > 0 And Asc(oldWord) <> Asc("#") Then 

      lastWords = Right(lastWords, Len(lastWords) - lenWd - 1) 

      lenWd = InStr(lastWords, "!") - 1 

      newWord = Left(lastWords, lenWd) 

      lastWords = Right(lastWords, Len(lastWords) - lenWd - 1) 

      Set rng = ActiveDocument.Content 

      With rng.Find 

        .ClearFormatting 

        .Replacement.ClearFormatting 

        .Text = oldWord 

        If myResponse = vbYes Then 

          .Replacement.Text = newWord 

        Else 

          .Replacement.Text = "^&" 

        End If 

        .Replacement.Highlight = True 

        .MatchWildcards = False 

        .MatchCase = False 

        .Execute Replace:=wdReplaceAll 

      End With 

    End If 

  Loop Until lenWd = -1 Or Asc(oldWord) = Asc("#") 

 

  With Selection.Find 

    .Text = oldFind 

    .Replacement.Text = oldReplace 

    .MatchCase = True 

  End With 

  Options.DefaultHighlightColorIndex = oldColour 

End If 

ActiveDocument.TrackRevisions = myTrack 

MsgBox (Timer - timeStart) 

 



If myResponse = vbYes Then 

   MsgBox ("IS words changed:  " & Str(totChanges) & "  ") 

Else 

   MsgBox ("IS words to be changed:  " & Str(totChanges) & "  ") 

End If 

 

End Sub 

 

##################################################### 

hi there, 

I have loaded the spell check macro from the internet but when the document is big (say 20 pages), the Word 2003 

stops responding after some pages. Sometimes, I cannot even use other Office software as it will affect the Word. Is 

there a limit on the resource? The macro was attached here. I want to use this macro so I can replace the mispelled 

word automatically and at this time, pick the top choice Word provides. 

 

Sub Auto_Spell() 

 

Dim myDoc As Document 

Dim SpellSuggs As SpellingSuggestions 

Set myDoc = ActiveDocument 

'********* START THE SPELLING CHECK LOOP ******************** 

Do While myDoc.SpellingErrors.Count >= 1 

'Check to make sure there is at least one spelling error. 

Set SpellSuggs = GetSpellingSuggestions(myDoc.SpellingErrors(1).Text) 

'Get the array of spelling suggestions that Word is offering 

'for the first error in the document. 

If SpellSuggs.Count >= 1 Then 

'If there are any suggestions, then accept the first suggestion. 

myDoc.SpellingErrors(1).Text = SpellSuggs(1) 

Else 

'If there are NO suggestions, then IGNORE the misspelled word. 

'Note: without this step, we will be stuck in an endless loop 

'that will constantly attempt to get suggestions for this word. 

myDoc.SpellingErrors(1).NoProofing = True 

End If 

Loop 

'********* END THE SPELLING CHECK LOOP ********************** End Sub 

 

Sub Auto_Spell() 

Dim SBar As Boolean           ' Status Bar flag 

Dim TrkStatus As Boolean      ' Track Changes flag 

' Store current Status Bar status, then switch on 

SBar = Application.DisplayStatusBar 

Application.DisplayStatusBar = True 

' Store current Track Changes status, then switch off 

With ActiveDocument 

  TrkStatus = .TrackRevisions 

  .TrackRevisions = False 

End With 

' Turn Off Screen Updating 

Application.ScreenUpdating = False 

Dim myDoc As Document, SpellSuggs As SpellingSuggestions, i As Long 

Set myDoc = ActiveDocument 

With myDoc 

  If .SpellingErrors.Count = 0 Then 

    MsgBox "No spelling errors found", vbExclamation 

    Exit Sub 



  End If 

  'Check for spelling errors 

  For i = .SpellingErrors.Count To 1 Step -1 

    StatusBar = i & " spelling errors remaining" 

    'Check to make sure there is at least one spelling error. 

    Set SpellSuggs = GetSpellingSuggestions(myDoc.SpellingErrors(i).Text) 

    'Get the array of spelling suggestions that Word offers 

    'for the current error. 

    If SpellSuggs.Count > 0 Then 

      'If there are any suggestions, then accept the first suggestion. 

      With myDoc.Content.Find 

        .ClearFormatting 

        .Replacement.ClearFormatting 

        .Format = False 

        .MatchAllWordForms = False 

        .MatchWholeWord = True 

        .Text = myDoc.SpellingErrors(i).Text 

        .Replacement.Text = SpellSuggs(1) 

        .Execute Replace:=wdReplaceAll 

      End With 

    Else 

      'If there are NO suggestions, then IGNORE the misspelled word. 

      'Note: without this step, we will be stuck in an endless loop. 

      myDoc.SpellingErrors(i).NoProofing = True 

    End If 

    i = .SpellingErrors.Count + 1 

  Next 

End With 

' Clear the Status Bar 

Application.StatusBar = False 

' Restore original Status Bar status 

Application.DisplayStatusBar = SBar 

' Restore original Track Changes status 

ActiveDocument.TrackRevisions = TrkStatus 

' Restore Screen Updating 

Application.ScreenUpdating = True 

MsgBox "Spellcheck Finished", vbExclamation 

End Sub 

 

__________________ 

Cheers 

 

thanks. 

 

##################################################### 

>     With Options 

>         .ReplaceSelection = True 

>         .AllowDragAndDrop = True 

>         .AutoWordSelection = True 

>         .INSKeyForPaste = False 

>         .PasteSmartCutPaste = True 

>         .AllowAccentedUppercase = False 

>         .PictureEditor = "Microsoft Office Word" 

>         .TabIndentKey = True 

>         .Overtype = False 

>         .AllowClickAndTypeMouse = True 

>         .CtrlClickHyperlinkToOpen = True 



>         .AutoKeyboardSwitching = False 

>         .PictureWrapType = wdWrapMergeInline 

>         .DisplayPasteOptions = True 

>         .PromptUpdateStyle = False 

>         .FormatScanning = True 

>         .ShowFormatError = False 

>         .SmartParaSelection = True 

>         .SmartCursoring = True 

>     End With 

>     ActiveDocument.ClickAndTypeParagraphStyle = "Normal" 

> End Sub 

 

 

##################################################### 

 

I didn't think the NumPages issue was still present in 2007 / 2010.  Shows you what I know. 

 

You could try this macro unless you already have an AutoOpen macro in your template or document.  It updates 

fields all over the doc - doc body, footers, headers, text boxes, footnote and endnote numbers and so on.  Calling it 

AutoOpen makes it execute when the file is opened. 

 

-  Jessica 

 

Sub AutoOpen 

' update all fields everywhere 

Dim story As Word.Range 

For Each story In ActiveDocument.StoryRanges 

    story.Fields.Update 

Next story 

End Sub 

 

##################################################### 

 

That said, there is one resource I always recommend when strange things start happening in Word. This is 

Microsoft's utility for fixing issues: 

http://support.microsoft.com/kb/822005 

 

If you click the 'fix it' button, it resets registry settings. It's a bit like a 'factory reset' for MS Word. It often solves a 

variety of problems that can't be explained any other way. 

 

 

##################################################### 

> Hi - Look here for the dialog enumerations: 

http://msdn.microsoft.com/en-us/library/ff836540.aspx 

> 

> and in the lefthand panel click on Enumerations to see more constants and sets. 

> 

> This for 2010, but nearly all of it works for earlier versions. 

 

##################################################### 

 

 

Sub ReplaceTwoDisPty() 

ActiveDocument.TrackRevisions = False 

Set rng = ActiveDocument.Content 

rng.Start = Selection.Start 

With rng.Find 



  .ClearFormatting 

  .Replacement.ClearFormatting 

  .Text = "DIS" 

  .Wrap = wdFindContinue 

  .Replacement.Text = "PTY" 

  .Forward = True 

  .MatchCase = True 

  .MatchWildcards = False 

  .Execute Replace:=wdReplaceOne 

End With 

rng.Start = rng.End 

rng.Find.Execute Replace:=wdReplaceOne 

rng.Start = rng.End 

rng.Select 

ActiveDocument.TrackRevisions = True 

End Sub 

 

 

 

##################################################### 

 

 

... 

 

Doesn't work!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

 

This is for Excel, but it might work. 

 

Test if it is a Mac or a Windows Machine 

 

 

Below there are two example macros that call a macro named My_Windows_Macro in Windows 

and a macro named My_Mac_Macro in Excel 2011 on the Mac 

 

You can test the operating system like this with VBA code : 

 

Sub WINorMAC() 

'Test the OperatingSystem 

  If Not Application.OperatingSystem Like "*Mac*" Then 

      MsgBox "I'm a PC" 

  Else 

      'I am a Mac and will test if it is Excel 2011 or higher 

      If Val(Application.Version) > 14 Then 

        MsgBox "I'm a modern Mac" 

      Else 

        MsgBox "I'm an old Mac" 

      End If 

  End If 

End Sub 

 

Or use use conditional compiler constants like this with VBA code : 

 

Sub WINorMAC_2() 

'Test the conditional compiler constants 

    #If Win32 Or Win64 Then 

        'I am Windows 

        Call My_Windows_Macro 



    #Else 

        'I am a Mac and will test if it is Excel 2011 or higher 

        If Val(Application.Version) > 14 Then 

            Call My_Mac_Macro 

        End If 

    #End If 

End Sub 

 

 

For Windows you can also test the VBA version so you know it is Excel 2010 or higher 

    #If VBA7 Then 

 

 

 

##################################################### 

 

Sub InsertNamesOfFilesInAFolder() 

 

Dim MyPath As String 

Dim MyName As String 

 

'let user select a path 

With Dialogs(wdDialogCopyFile) 

    If .Display() <> -1 Then Exit Sub 

    MyPath = .Directory 

End With 

 

'strip quotation marks from path 

 

If Len(MyPath) = 0 Then Exit Sub 

 

If Asc(MyPath) = 34 Then 

    MyPath = Mid$(MyPath, 2, Len(MyPath) - 2) 

End If 

 

'get files from the selected path 

'and insert them into the doc 

MyName = Dir$(MyPath & "*.*") 

Do While MyName <> "" 

    Selection.InsertAfter MyName & vbCr 

    MyName = Dir 

Loop 

 

'collapse the selection 

Selection.Collapse wdCollapseEnd 

 

End Sub 

 

##################################################### 

 

Type curly quotes (before and after alpha character), 

but highlighted (don't ask why!) 

 

Selection.Collapse wdCollapseStart 

If LCase(Selection) <> UCase(Selection) Then 

  Selection.TypeText Text:=ChrW(8216) 

' Or for double quotes 



'  Selection.TypeText Text:=ChrW(8220) 

Else 

  Selection.TypeText Text:=ChrW(8217) 

' Or for double quotes 

'  Selection.TypeText Text:=ChrW(8221) 

End If 

Selection.MoveStart wdCharacter, -1 

Selection.Range.HighlightColorIndex = wdBrightGreen 

 

' Or for dark green: 

' Selection.Range.HighlightColorIndex = wdGreen 

 

Selection.Start = Selection.End 

 

 

##################################################### 

 

Number of current para 

 

paraNum = ActiveDocument.Range(0, Selection.Paragraphs(1).Range.End).Paragraphs.Count 

 

 

##################################################### 

 

Information Property 

 

Office 2003 

 

Returns information about the specified selection or range. Read-only Variant. 

 

expression.Information(Type) 

 

expression Required. An expression that returns one of the objects in the Applies To list. 

 

 WdInformation 

 

________________________________________ 

 

WdInformation can be one of these WdInformation constants. 

 

wdActiveEndAdjustedPageNumber Returns the number of the page that contains the active end of the specified 

selection or range. If you set a starting page number or make other manual adjustments, returns the adjusted page 

number (unlike wdActiveEndPageNumber). 

 

wdActiveEndPageNumber Returns the number of the page that contains the active end of the specified selection or 

range, counting from the beginning of the document. Any manual adjustments to page numbering are disregarded 

(unlike wdActiveEndAdjustedPageNumber). 

 

wdActiveEndSectionNumber Returns the number of the section that contains the active end of the specified 

selection or range. 

 

wdAtEndOfRowMarker Returns True if the specified selection or range is at the end-of-row mark in a table. 

 

wdCapsLock Returns True if Caps Lock is in effect. 

 

wdEndOfRangeColumnNumber Returns the table column number that contains the end of the specified selection or 

range. 



 

wdEndOfRangeRowNumber Returns the table row number that contains the end of the specified selection or range. 

 

wdFirstCharacterColumnNumber Returns the character position of the first character in the specified selection or 

range. If the selection or range is collapsed, the character number immediately to the right of the range or selection 

is returned (this is the same as the character column number displayed in the status bar after "Col"). 

 

wdFirstCharacterLineNumber Returns the character position of the first character in the specified selection or 

range. If the selection or range is collapsed, the character number immediately to the right of the range or selection 

is returned (this is the same as the character line number displayed in the status bar after "Ln"). 

 

wdFrameIsSelected Returns True if the selection or range is an entire frame or text box. 

 

wdHeaderFooterType Returns a value that indicates the type of header or footer that contains the specified 

selection or range, as shown in the following table. 

 

wdHorizontalPositionRelativeToPage Returns the horizontal position of the specified selection or range; this is the 

distance from the left edge of the selection or range to the left edge of the page measured in points (1 point = 20 

twips, 72 points = 1 inch). If the selection or range isn't within the screen area, returns - 1. 

 

wdHorizontalPositionRelativeToTextBoundary Returns the horizontal position of the specified selection or range 

relative to the left edge of the nearest text boundary enclosing it, in points (1 point = 20 twips, 72 points = 1 inch). 

If the selection or range isn't within the screen area, returns - 1. 

 

wdInClipboard For information about this constant, consult the language reference Help included with Microsoft 

Office Macintosh Edition. 

 

wdInCommentPane Returns True if the specified selection or range is in a comment pane. 

 

wdInEndnote Returns True if the specified selection or range is in an endnote area in print layout view or in the 

endnote pane in normal view. 

 

wdInFootnote Returns True if the specified selection or range is in a footnote area in print layout view or in the 

footnote pane in normal view. 

 

wdInFootnoteEndnotePane Returns True if the specified selection or range is in the footnote or endnote pane in 

normal view or in a footnote or endnote area in print layout view. For more nformation, see the descriptions of 

wdInFootnote and wdInEndnote in the preceding paragraphs. 

 

wdInHeaderFooter Returns True if the selection or range is in the header or footer pane or in a header or footer in 

print layout view. 

 

Value Type of header or footer 

 

- 1 None (the selection or range isn't in a header or footer) 

 

0 (zero) Even page header 

 

1 Odd page header (or the only header, if there aren't odd and even headers) 

 

2 Even page footer 

 

3 Odd page footer (or the only footer, if there aren't odd and even footers) 

 

4 First page header 

 

5 First page footer 



 

 

 

wdInMasterDocument Returns True if the selection or range is in a master document (that is, a document that 

contains at least one subdocument). 

 

wdInWordMail Returns True if the selection or range is in the header or footer pane or in a header or footer in print 

layout view. 

 

Value Location 

 

0(zero) The selection or range isn't in an e-mail message. 

 

1 The selection or range is in an e-mail message you are sending. 

 

2 The selection or range is in an e-mail you are reading. 

 

 

 

wdMaximumNumberOfColumns Returns the greatest number of table columns within any row in the selection or 

range. 

 

wdMaximumNumberOfRows Returns the greatest number of table rows within the table in the specified selection 

or range. 

 

wdNumberOfPagesInDocument Returns the number of pages in the document associated with the selection or 

range. 

 

wdNumLock Returns True if Num Lock is in effect. 

 

wdOverType Returns True if Overtype mode is in effect. The Overtype property can be used to change the state of 

the Overtype mode. 

 

wdReferenceOfType Returns a value that indicates where the selection is in relation to a footnote, endnote, or 

comment reference, as shown in the following table. 

 

Value Description 

 

- 1 The selection or range includes but isn't limited to a footnote, endnote, or comment reference. 

 

0 (zero) The selection or range isn't before a footnote, endnote, or comment reference. 

 

1 The selection or range is before a footnote reference. 

 

2 The selection or range is before an endnote reference. 

 

3 The selection or range is before a comment reference. 

 

 

 

wdRevisionMarking Returns True if change tracking is in effect. 

 

wdSelectionMode Returns a value that indicates the current selection mode, as shown in the following table. 

 

Value Selection mode 

 

0 (zero) Normal selection 



 

1 Extended selection ("EXT" appears on the status bar) 

 

2 Column selection. ("COL" appears on the status bar) 

 

 

 

wdStartOfRangeColumnNumber Returns the table column number that contains the beginning of the selection or 

range. 

 

wdStartOfRangeRowNumber Returns the table row number that contains the beginning of the selection or range. 

 

wdVerticalPositionRelativeToPage Returns the vertical position of the selection or range; this is the distance from 

the top edge of the selection to the top edge of the page measured in points (1 point = 20 twips, 72 points = 1 inch). 

If the selection isn't visible in the document window, returns - 1. 

 

wdVerticalPositionRelativeToTextBoundary Returns the vertical position of the selection or range relative to the 

top edge of the nearest text boundary enclosing it, in points (1 point = 20 twips, 72 points = 1 inch). This is useful 

for determining the position of the insertion point within a frame or table cell. If the selection isn't visible, returns - 

1. 

 

wdWithInTable Returns True if the selection is in a table. 

 

wdZoomPercentage Returns the current percentage of magnification as set by the Percentage property. 

 

Example 

 

This example displays the current page number and the total number of pages in the active document. 

 

MsgBox "The selection is on page " & _ 

 

    Selection.Information(wdActiveEndPageNumber) & " of page " _ 

 

    & Selection.Information(wdNumberOfPagesInDocument) 

 

 

 

If the selection is in a table, this example selects the table. 

 

If Selection.Information(wdWithInTable) Then _ 

 

    Selection.Tables(1).Select 

 

 

 

This example displays a message that indicates the current section number. 

 

Selection.Collapse Direction:=wdCollapseStart 

 

MsgBox "The insertion point is in section " & _ 

 

    Selection.Information(wdActiveEndSectionNumber) 

 

 

 

 

 



 

 

 

 

 

 

##################################################### 

 

 

Set rng = ActiveDocument.Range 

jhkshkg = rng.Start 

jhkhdf = rng.End 

' rng.GoTo wdGoToLine, wdGoToAbsolute, 3 

Set rng = ActiveDocument.Comments(3) 

kjhkshkg = rng.Start 

kjhkhdf = rng.End 

cvxszcv = 0 

Exit Sub 

Selection.HomeKey Unit:=wdStory 

Set rng = ActiveDocument.Range 

' Add initials + index number to each comment 

  For i = 1 To ActiveDocument.Comments.Count 

    myInits = "[" & ActiveDocument.Comments(i).Initial & Trim(Str(i)) & "]" 

    Selection.GoTo wdGoToComment, wdGoToAbsolute, 1 

    Selection.End = Selection.End + 6 

    Selection.InsertAfter myInits 

  Next i 

Exit Sub 

 

  ' This works!!! 

Set rng = ActiveDocument.Paragraphs(3).Range 

With rng.Find 

  .ClearFormatting 

  .Replacement.ClearFormatting 

  .Text = "e" 

  .Wrap = wdFindContinue 

  .Replacement.Text = "" 

  .Forward = True 

  .MatchWildcards = False 

  .Execute 

End With 

 

rng.Select 

Exit Sub 

 

rng.Font.Italic = True 

rng.SetRange Start:=0, End:=10 

 

 

 

  ' This works!!! 

Selection.SetRange Start:=0, End:=10 

Exit Sub 

 

' This doesn't work 

' activedocument.Content.SetRange(0,0) 

Exit Sub 



 

  ' This works!!! 

Set rng = ActiveDocument.Content 

rng.End = 10 

rng.Font.Bold = True 

 

##################################################### 

 

Give me synonyms if there are any... 

Selection.Words(1).Select 

Set rng = Selection.Range 

Selection.Start = Selection.End 

Set synInfo = rng.SynonymInfo 

If synInfo.MeaningCount >= 2 Then 

    synList = synInfo.SynonymList(2) 

    allSyns = "[" 

    For i = 1 To UBound(synList) 

        allSyns = allSyns & synList(i) & " " 

    Next i 

  rng.InsertAfter Replace(allSyns & "] ", ", ]", "]") 

Else 

  Beep 

End If 

 

 

##################################################### 

 

Howard's suggestion 

 

Sub DeleteAllLinksHS() 

    Dim i As Integer 

 

    With ActiveDocument 

        For i = .Hyperlinks.count To 1 Step -1 

            .Hyperlinks(i).Delete 

        Next 

    End With 

End Sub 

 

 

##################################################### 

Howard's suggestion 

 

Sub DeleteAllLinks2HS() 

    Dim i As Integer 

    Dim StoryRng As Range 

 

    For Each StoryRng In ActiveDocument.StoryRanges 

        With StoryRng 

            For i = .Hyperlinks.count To 1 Step -1 

                .Hyperlinks(i).Range.HighlightColorIndex = wdGray25 

                .Hyperlinks(i).Delete 

            Next 

        End With 

    Next StoryRng 

End Sub 

 



 

##################################################### 

 

Sub ToggleNextCharacterCaseWithTrackingHS() 

 Dim ch As Range 

 

 Set ch = ActiveDocument.Range(Selection.Range.End, Selection.Range.End + 1) 

 If UCase(ch.Text) <> LCase(ch.Text) Then ch.Text = ch.Text ' Does nothing, but is 

             ' recorded as a change 

 ch.Case = wdToggleCase 

 .MoveRight Unit:=wdCharacter, Count:=1 

End Sub 

 

 

##################################################### 

 

Create a list of macros in Normal Template. 

 

Selection.HomeKey Unit:=wdStory 

Selection.EndKey Unit:=wdStory, Extend:=wdExtend 

Selection.Range.HighlightColorIndex = wdYellow 

 

With Selection.Find 

  .ClearFormatting 

  .Replacement.ClearFormatting 

  .Text = "Sub [a-zA-Z_]{3,}\(\)" 

  .Replacement.Text = "" 

  .Wrap = wdFindContinue 

  .Forward = True 

  .Replacement.Highlight = False 

  .MatchWildcards = True 

  .Execute Replace:=wdReplaceAll 

End With 

 

With Selection.Find 

  .ClearFormatting 

  .Replacement.ClearFormatting 

  .Text = "" 

  .Highlight = True 

  .Replacement.Text = "^p" 

  .Forward = True 

  .MatchWildcards = False 

  .Execute Replace:=wdReplaceAll 

End With 

 

 

##################################################### 

Sub StripOutMacros() 

' Version 21.12.11 

 

Set myBook = ActiveDocument 

Documents.Add DocumentType:=wdNewBlankDocument 

Set myMacros = ActiveDocument 

myBook.Activate 

 

Do 

  With Selection.Find 



    .ClearFormatting 

    .Replacement.ClearFormatting 

    .Text = "Sub [a-zA-Z]{3,}\(\)" 

    .Wrap = False 

    .Replacement.Text = "" 

    .Forward = True 

    .MatchWildcards = True 

    .Execute 

  End With 

  If Selection.Find.Found = True Then 

    Selection.Copy 

    Selection.End = Selection.Start 

    Selection.Paste 

    Selection.TypeText Text:=vbCrLf 

    Selection.Start = Selection.End 

    With Selection.Find 

      .ClearFormatting 

      .Replacement.ClearFormatting 

      .Text = "^pEnd S" & "ub" 

      .Wrap = False 

      .Forward = True 

      .Replacement.Text = "" 

      .MatchWildcards = False 

      .Execute 

    End With 

    endMacro = Selection.End 

    Selection.Start = Selection.End 

    With Selection.Find 

      .ClearFormatting 

      .Replacement.ClearFormatting 

      .Text = "Sub *\(\)^13" 

      .Forward = False 

      .Replacement.Text = "" 

      .MatchWildcards = True 

      .Execute 

    End With 

    Selection.End = Selection.Start 

    Selection.End = endMacro 

    Selection.Cut 

    myMacros.Activate 

    Selection.Paste 

    Selection.Start = Selection.End 

    Selection.TypeText Text:=vbCrLf & vbCrLf & vbCrLf 

    myBook.Activate 

 

  stopNow = False 

  Else 

    stopNow = True 

  End If 

  Selection.Start = Selection.End 

Loop Until stopNow = True 

 

Exit Sub 

 

 

 

##################################################### 



Howard Silcock's ideas 

 

 

Comments on parts of Macros for Editors 

I‘ll start with some general comments. 

I notice that your style of programming involves moving the cursor around a lot. I don‘t know if this derives from 

basing your programming on recorded macros, or if you used to program with Word Basic, but I think it means that 

some of your macros are much more complex than they need to be. In Word Basic you couldn‘t do anything 

without moving the cursor to the place you wanted to make a change, but when they introduced VBA that all 

changed and you can now refer to ranges, paragraphs, and so on, without actually selecting them.  That speeds 

things up, since moving the cursor around takes processing time. I try to avoid changing the selection or moving 

the cursor in a macro unless that is specifically one of the aims of the macro. My philosophy, I suppose, is to leave 

everything as it was except for the specific changes you want to achieve — I guess it‘s an extension of your 

practice of cleaning everything out of the Find and Replace text boxes and deselecting Match Wildcards before 

leaving a macro. 

For example, if you stop worrying about where the cursor is, most of the work in your macro AddComment can be 

put into the single line 

ActiveDocument.Comments.Add Range:=Selection.Range, Text:=Selection.Range.Text 

(This line copies the selected text into a new comment, but doesn‘t add the embellishments or highlights, etc. See 

below for a more complete version.) 

Similarly, I created my own version of your macro ScareQuoteAdd and it looked like this: 

Sub ScareQuoteAddHS() 

    With Selection.Words(1) 

        .MoveEndWhile cset:=" ", Count:=wdBackward 

        .InsertBefore Text:=Chr(145) 

        .InsertAfter Text:=Chr(146) 

    End With 

End Sub 

Notice that the selection itself isn‘t changed at all. The first task is to identify the word containing the selection. 

You can use Selection.Words(1) except that, as you know, that contains also the space or spaces after the word (I‘m 

assuming here that the selection is just a point within the word). So you shrink that range from the end (using the 

range method called MoveEndWhile) until you move past the spaces. But you don‘t need to select the range before 

you do so; you just apply the change to the range you‘ve already identified. The next two steps are to add the quote 

marks, but again you apply InsertBefore and InsertAfter to the now slightly shrunken range and leave the selection 

unchanged. When you run the macro, the selection remains exactly as it was. (Of course, sometimes it‘s much more 

difficult to pinpoint the range or whatever it is you want to change.) 

The other thing that would probably make your life much easier is to •modularise‘ your code. Every time you find 

yourself carrying out the same steps, or a very similar set of steps, more than once, think whether you could 

separate them out into another macro or maybe a function. For example, your macros often seem to read 

instructions from one document and then apply them to another and it would make sense to use two separate 

macros, which you can then develop and test independently. 

Here‘s an example I‘ve been thinking about where a user-defined function could be really useful. I‘ve been 

wondering how to define a function OffsetWord that would let you identify a word displaced a certain number of 

positions after the one containing the selection. For instance OffsetWord(Selection.Range, 1) would be the word 

that comes after the one containing the selection, and OffsetWord(Selection.Range, 2) would be the word after that, 

and so on. And hopefully you can get the word before the word containing the selection as 

OffsetWord(Selection.Range, —1). (And OffsetWord(Selection.Range, 0) would just be the word containing the 

selection— that is, it‘d be the same as Selection.Range.Words(1).) 

Now I‘ll follow with a few comments about individual bits of your document. (Note that I‘ve skipped over your 

really big macros, mainly because I was too daunted to go through all the code!) 

Delete All Hyperlinks 

DeleteAllLinks will mess up all other fields as well as the hyperlinks — e.g. TOCs and cross-refs will be frozen. 

Try this instead: 

 

Sub DeleteAllLinksHS() 

    Dim i As Integer 

 



    With ActiveDocument 

        For i = .Hyperlinks.count To 1 Step -1 

            .Hyperlinks(i).Delete 

        Next 

    End With 

End Sub 

 

(You loop through the links in reverse — from the last to the first — because each time you delete a link the 

numbering of the subsequent links is changed.) 

That one didn‘t deal with footnotes etc. To do that, you need to loop through story ranges: 

Sub DeleteAllLinks2HS() 

    Dim i As Integer 

Dim StoryRng As Range 

 

For Each StoryRng In ActiveDocument.StoryRanges 

    With StoryRng 

        For i = .Hyperlinks.count To 1 Step -1 

            .Hyperlinks(i).Range.HighlightColorIndex = wdGray25 

            .Hyperlinks(i).Delete 

        Next 

    End With 

Next StoryRng 

End Sub 

 

In that second one I also included the option (highlighted in grey) to highlight the ranges from which the links were 

removed. 

Change Case of Next Letter 

A minor quibble about this one. ToggleNextCharCase doesn‘t always preserve text formatting: if the character is 

originally italic or bold or red, or whatever, then its replacement only has those properties if the preceding character 

also had them. This is because the original character is deleted, then its replacement is typed; and a newly typed 

character by default just shares the formatting of the preceding one. E.g. if the text was •The white one‘ and you 

put the cursor before the •w‘, it would be changed to •The White one‘, unless the space was also italicised. 

This one avoids that problem because nothing is typed into the document: 

Sub ToggleNextCharCaseHS() 

 With Selection 

  ActiveDocument.Range(.Range.End,.Range.End + 1).Case = wdtoggleCase 

  .MoveRight Unit:=wdCharacter, Count:=1 

 End With 

End Sub 

If you have tracking on, that version won‘t show the change (if there is one). If you want to record a change you 

could force a •dummy change‘ by a trick like this: 

Sub ToggleNextCharacterCaseWithTrackingHS() 

 Dim ch As Range 

 

 Set ch = ActiveDocument.Range(Selection.Range.End, Selection.Range.End + 1) 

 If UCase(ch.Text) <> LCase(ch.Text) Then ch.Text = ch.Text ' Does nothing, but is 

             ' recorded as a change 

 ch.Case = wdToggleCase 

 .MoveRight Unit:=wdCharacter, Count:=1 

End Sub 

Word and Phrase Frequency 

There is a problem with searching for multi-word phrases. If you set MatchWholeWord = True, and try to search 

for a multi-word phrase, VBA simply ignores the MatchWholeWord option. If you try to do the same search 

manually (using the dialog box), then, once you‘ve entered a multi-word search phrase in the dialog box‘s search 

box, you‘ll find that the Find Whole Words Only check box is greyed out. But when you do the same search with 

VBA, nothing prevents you; Word goes to work and you think it‘s doing what you want, but in fact it ignores the 



Find Whole Words Only command and returns strings containing parts of words as well (e.g. it‘ll find •valid 

entry‘ even when it appears as part of •invalid entry‘). 

I think the easiest way around this may be to define a Boolean function that tests whether a range consists of whole 

words, then apply it to any range found in the search and ignore that range if the result is False. The following is 

the function I came up with. 

Function IsWholeWordPhraseHS(Rng As Range) As Boolean 

    Dim FirstWord As String, LastWord As String, RngText As String 

 

    RngText = Trim(Rng.Text) 

    FirstWord = Trim(Rng.Words(1).Text) 

    LastWord = Trim(Rng.Words(Rng.Words.Count).Text) 

    ' If Rng doesn‘t consist of whole words, then part of either FirstWord or 

    ' Lastword must lie outside Rng 

 

    ' Next line handles the case where the last word is followed by a single 

    ' quote (either straight or curly). In this case the quote is treated as 

    ' part of the word, so we need to remove it before proceeding. 

    If InStr("'‘", Right(LastWord, 1)) > 0 And Len(LastWord) > 1 Then 

        LastWord = Left(LastWord, Len(LastWord) - 1) 

    End If 

 

    IsWholeWordPhrase = (InStr(RngText, FirstWord) = 1 And _ 

                  InStrRev(RngText, LastWord) = Len(RngText) - Len(LastWord) + 1) 

End Function 

 

As it stands, this returns True when Rng consists of a number of whole words followed (optionally) by any number 

of spaces, but not when there are spaces in front of the first word. That conforms, however, to Word‘s habit of 

including the following space or spaces when you select a word. 

Using this we can define a function CountPhrOccurrencesHS that counts the number of occurrences of a phrase phr 

in the active document, with further parameters CaseSens and MatchWholeWords that you can set. Each time the 

phrase is found, it‘s tested to see whether it‘s a ”whole word phrase•; if it‘s not and you‘re doing a whole word 

search, then that occurrence is ignored and doesn‘t contribute to the count. This works just as well with hyphenated 

phrases, so you can avoid all that replacing hyphens with weird text strings. (However, the need to include the test 

for each string found does slow the macro down.) 

 

Function CountPhrOccurrencesHS(phr As String, MatchWholeWords As Boolean, _ 

         Optional CaseSens As Boolean = False) As Integer 

' Finds and counts occurrences of the phrase phr in a document or in the selected range. 

' Set MatchWholeWords = True to ignore occurrences where one or more words in phr occur 

' only as part of a word in the document or range - e.g. where 'valid response' is found 

' inside 'invalid response'. 

' If a range is selected, the count is confined to that range. Otherwise it applies to 

' the entire document. Set CaseSens = True for a case sensitive search; omit or set to 

' False for a case insensitive search. 

    Dim Rng As Range 

    Dim Count As Integer, RngEndPt As Long 

 

    If phr = "" Then    ' Put this check in to avoid possible unintended searches 

        CountPhrOccurrencesHS = 0 

        Exit Function 

    End If 

 

    Count = 0 

 

    If Selection.Type = wdSelectionNormal Then  ' Selection is a block of text 

        Set Rng = Selection.Range 

    Else    ' Selection is just a point (or maybe a graphic or whatever) 



        Set Rng = ActiveDocument.Range 

    End If 

 

    RngEndPt = Rng.End 

    With Rng.Find 

        .ClearFormatting 

        .Text = phr 

        .MatchCase = CaseSens 

        .Format = False 

        .MatchWholeWord = False 'Turn off built-in whole-word matching to avoid problems 

        .Execute 

 

        While .Found And Len(Rng.Text) > 0 

            If IsWholeWordPhrase(Rng) Or Not MatchWholeWords Then 

                Count = Count + 1 

            End If 

            Set Rng = ActiveDocument.Range(Rng.End, RngEndPt) 

            .Execute 

        Wend 

    End With 

    CountPhrOccurrencesHS = Count 

End Function 

Add Comment 

This is a more complete version of the one-liner mentioned in the introduction. 

Sub CommentAddHS(attrib As String, 

                 Optional textHighlightColour As WdColorIndex = wdNoHighlight, _ 

                 Optional textColour As WdColorIndex = wdAuto) 

    Dim CommentText As String 

 

    With Selection 

        CommentText = attrib & "p." & .Range.Information(wdActiveEndPageNumber) & _ 

            " " & Chr(150) & " " _ 

            & Chr(145) & Trim(.Range.Text) & Chr(146) 

        ActiveDocument.Comments.Add Range:=.Range, Text:=CommentText 

        .Range.HighlightColorIndex = textHighlightColour 

        .Range.Font.Color = textColour 

    End With 

End Sub 

You‘ll note that I‘ve put the user-specified values attrib, textHighlightColour and textColour as parameters of the 

macro and set default values. As I notice that you don‘t use this approach, I wonder if you are familiar with this use 

of parameters. When a macro has parameters, you can‘t launch it with a keystroke, but you define another macro 

that sets the values for these (maybe you could prompt the user to supply them) and then call the macro with  

parameters from within that macro — which you can launch by a keystroke. The •optional‘ parameters can be 

omitted when you call the macro and are then set to the specified values (in this case wdNoHighlight and wdAuto, 

which effectively amount to •doing nothing‘ to the highlighting and font attributes). One more thing: I guess you 

may not be aware that you can get the page number of a range using the built-in 

Information(wdActiveEndPageNumber). One of those things that are hard to find out about except by chance or 

from someone else‘s code. Now you know where to look, you can find more about it from the online help. 

I didn‘t cover the issue of change-tracking, but you could add another parameter to tell the macro if you want it to 

turn tracking off before and then back on again after. 

 

Well, I guess that should be enough to be going on withŒ 

Howard 

 

 

##################################################### 

> I've not discovered the Immediate window - that's new to me. 



 

I think it was a while before I started using it, It's a great way to try 

lines of code out. Just press Ctrl-G to open it. Then you can type a line 

of code, hit return and it will carry it out on the active document. Or 

type ? then some expression (as in the example I suggested) and it will 

evaluate it and type out the result. If a macro aborts during execution, 

you can use this to evaluate different things to work out what's going on. 

 

 

 

##################################################### 

 

> The one place where you specifically ask for input is on the topic of 

> fields - particularly your FieldsULink macro. For the example task you 

> mention, it seems likely that for automatic figure numbers and equation 

> numbers the fields used would most likely be SEQUENCE fields and it would 

> be much safer, if that's the case, to unlink only that type of field. You 

> can test this hypothesis by selecting one of the fields and then typing in 

> the Immediate window of the VBA editor 

 

I've not discovered the Immediate window - that's new to me. 

 

 

> ?selection.Range.Fields(1).Type 

> 

> If I'm right, this would return a value of 12 (which is equal to the VBA 

> constant wdFieldSequence). In that case, you could do what you want by 

> looping through the fields and testing whether fld.type = 12 instead of 

> testing for fld.type <> 58. That would mean you'd avoid unlocking a whole 

> lot of other fields that could potentially be in the document, including 

> things likes filenames, page numbers and TOCs. In fact you may be able to 

> narrow down the fields to be unlocked even further because each SEQUENCE 

> field has a particular sequence name that you could test for. 

 

 

 

##################################################### 

 

Selection.MoveRight Unit:=wdCharacter, Count:=1, Extend:=wdExtend 

NormalTemplate.AutoTextEntries.AppendToSpike Range:=Selection.Range 

Selection.Delete 

With NormalTemplate.AutoTextEntries("Spike") 

  .Insert Where:=Selection.Range, RichText:=True 

  .Delete 

End With 

 

 

##################################################### 

 

 

Sub TrackChangeExamine() 

' Version 02.03.11 

' Examine the track changes 

maxRev = ActiveDocument.Revisions.Count 

WordBasic.NextChangeOrComment 

nowRev = ActiveDocument.Range(0, Selection.Range.Revisions(1).Range.End).Revisions.Count 

Selection.Start = Selection.End 



For i = nowRev To maxRev 

  Set myRev = ActiveDocument.Revisions(i) 

  If ActiveDocument.Revisions(i).Type > 2 Then 

    myRev.Range.Select 

    MsgBox ("Type: " & myRev.Type & "  - " & myRev.FormatDescription) 

  End If 

  StatusBar = "Revision number: " & Str(maxRev - i) 

Next i 

Beep 

End Sub 

 

 

##################################################### 

Sub FindAndReplaceFirstStoryOfEachType() 

  Dim rngStory As Range 

  For Each rngStory In ActiveDocument.StoryRanges 

    With rngStory.Find 

      .Text = "find text" 

      .Replacement.Text = "I'm found" 

      .Wrap = wdFindContinue 

      .Execute Replace:=wdReplaceAll 

    End With 

  Next rngStory 

End Sub 

 

 

##################################################### 

(From GoldMine) 

 

Manipulating the clipboard using VBA 

 

Article contributed by Jonathan West 

 

Although VB6 has a Clipboard object which you can manipulate, Word VBA 

doesn't. This is how to clear the clipboard in VBA: 

 

Dim myData As DataObject 

 

Set MyData = New DataObject 

MyData.SetText "" 

MyData.PutInClipboard 

 

This is how to get the text on the clipboard into a string variable: 

 

Dim MyData As DataObject 

Dim strClip As String 

 

Set MyData = New DataObject 

MyData.GetFromClipboard 

strClip = MyData.GetText 

Set MyData = New DataObject 

MyData.GetFromClipboard 

strClip = MyData.GetText 

 

This is how to get the text from a string variable into the clipboard: 

 

Dim MyData As DataObject 



Dim strClip As String 

strClip = "Hi there" 

 

Set MyData = New DataObject 

 

MyData.SetText strClip 

MyData.PutInClipboard 

 

The DataObject object is a part of the Forms library in VBA. In order 

to make this code work, you must do one of two things. 

 

    Have at least one UserForm in your project, or 

    In the VBA editor, go to Tools, References, and set a reference 

to the "Microsoft Forms 2.0 Object Library" 

 

 

##################################################### 

 

(From GoldMine) 

SortArray 

 

This is perhaps the most useful of the commands left behind. It 

allows you to sort the elements of an array using a single line of 

code. At its simplest, you can use it on a one-dimensional array as 

follows. 

 

Sub SortTest() 

    Dim ss(2) As String 

    Dim i As Long 

 

    ss(0) = "orange" 

    ss(1) = "apple" 

    ss(2) = "banana" 

    WordBasic.SortArray ss() 

 

    For i = 0 To 2 

        Debug.Print ss(i) 

    Next i 

 

End Sub 

 

This sorts the array in ascending alphabetical order 

 

However, you can also sort in descending order, and sort either 

dimension of a two-dimension array. The full list of the SortArray 

arguments is as follows 

 

SortArray ArrayName[$]() [, Order] [, From] [, To] [, SortType] [, SortKey] 

 

 

ArrayName is the name of the array 

 

 

Order is 0 for ascending (by default), 1 for descending 

 

 

From is the first element to sort (0 by default) 



 

 

To is the last element to sort (by default the last element of the 

array) 

 

 

SortType determines whether you are sorting rows or columns. 0 

(default) for rows, 1 for columns 

 

 

SortKey is applicable only to two-dimensional arrays, and indicates 

the row or column used as the sort key. It is 0 by default 

 

Note that, unlike most VBA methods, you don't use named arguments 

with this command; thus you can have 

 

WordBasic.SortArray MailingList$(), 1, 1, 20, 0, 1 

 

but not 

 

WordBasic.SortArray ArrayName:=MailingList$(), Order:=1, From:=1, To:=20, _ 

        SortType:=0, SortKey:=1 

 

Also, you cannot miss out arguments if you want to use later ones, 

thus you can have 

 

WordBasic.SortArray Test(), 0, 0, 2, 0, 1 

 

but not 

 

WordBasic.SortArray Test(), 0, , , , 1 

 

There is one other limitation of the SortArray command. It will sort 

an array declared as such, but it will not sort an array that is 

contained in a Variant. If you create an array like this: 

 

Dim vArray as Variant 

vArray = Array("orange", "apple", "banana") 

 

SortArray will not sort it. 

 

(Also if you do not declare your array at all, it will be treated as 

a variant and will not be sorted). 

 

FileNameInfo$() 

 

This is another very useful function for which there is no direct VBA 

equivalent. FileNameInfo allows you to get just the filename or a 

fully qualified pathname from a filename given to it. The nearest 

equivalent in VBA are the Name, FullName and Path properties of the 

Document object. 

 

FileNameInfo is different in that you don't need to have the document 

open. 

 

The syntax is 

 



x = WordBasic.FilenameInfo$(Filename$, FileType) 

 

where Filename is the name of the file, and FileType is a number 

which defines the  part of the filename you want to return: 

 

1 - the full pathname, e.g. C:\My Documents\My File.doc" 

2 - the filename only, if the file is in the current folder, otherwise the full pathname 

3 - the filename only 

4 - the filename without the extension 

5 - the path without the filename 

6 - the UNC pathname 

 

One case where FileNameInfo$ is very useful is to get the pathname of 

a file which has just been selected by the user in the FileOpen 

dialog. The following code returns the full pathname of a file 

selected by the user. 

 

With Dialogs(wdDialogFileOpen) 

    If .Display Then 

        MsgBox WordBasic.FilenameInfo$(.Name, 1) 

    Else 

        MsgBox "No file selected" 

    End If 

End With 

 

 

ToolsBulletsNumbers 

 

WordBasic allows you to remove all manually typed numbering from a 

selection using the old Word 2 command: 

 

WordBasic.ToolsBulletsNumbers Replace:=0, Type:=1, Remove:=1 

 

This is particularly useful for removing manually typed numbering 

from Headings in a document you have been emailed, prior to applying 

List Numbering. If you go into Outline View, set the Heading Level to 

the number of levels you need to remove the typed numbering from, and 

run the above line, it will just remove numbering from those Headings 

and will leave the body text alone. 

 

 

##################################################### 

Displaying errors? 

 

Err.Raise Err.Number, Err.Source, Err.Description 

 

##################################################### 

Problems with CiteCheck not recognising filenames: 

 

I figured out the problem. It was the stupid compatibility mode all along. 

You had taken care of this problem in your code except that I think Word 

2010 has a slightly different naming convention for the actual window name 

where the window name is now "FileName.docx [compatibility mode] " instead 

of "FileName [compatibility mode] .docx" 

 

So, the code that works for me looks like this (change highlighted in 

yellow): 



 

 

' Go back to text and grey all identical citations 

 

lookingFor = textDoc 

 

      Windows(textDoc).Activate 

 

      If Err.Number = 5941 Then 

 

        Err.Clear 

 

        textDoc = Replace(textDoc, ".docx", ".docx [Compatibility Mode]") 

 

        'textDoc = Replace(textDoc, ".", " [Compatibility Mode].") 

 

        Windows(textDoc).Activate 

 

        If Err.Number = 5941 Then GoTo ReportIt 

 

 

I tried adding a few lines so that it would work for both naming 

conventions, but I kept getting an error, so maybe you can figure out how to 

do that? 

 

Cheers, 

Clark 

 

##################################################### 

The following sample Visual Basic for Applications macros demonstrate how to 

change the value of the *Title* field in the *Properties* dialog box. The 

following sample also includes code to trap the error, in case there are no 

documents open, and to display a message: 

 

Sub ChangeDocProperties() 

 

   On Error GoTo ErrHandler 

      ActiveDocument.BuiltInDocumentProperties("Title") = "My Title" 

   Exit Sub 

 

ErrHandler: 

   If Err <> 0 Then 

 

      ' Display an error message. 

      MsgBox Err.Description 

 

      'Clear the error. 

      Err.Clear 

      Resume Next 

 

   End If 

 

End Sub 

 

##################################################### 

Word 2004 doesn't have the Replace() function! 

 



If you find the rogue line: 

 

  Selection.InsertAfter Text:=Replace(duplicateList, "!", vbCrLf) 

 

delete that single line and then replace it with: 

 

  newList = "" 

  For i = 1 To Len(duplicateList) 

    myChar = Mid(duplicateList, i, 1) 

    If myChar = "!" Then myChar = vbCrLf 

    newList = newList & myChar 

  Next i 

  Selection.InsertAfter Text:=newList 

 

It takes those first six lines to do exactly the same thing as the 

single command Replace(duplicateList, "!", vbCrLf)! 

 

##################################################### 

 

> I have a little time on my hands today.  Here is a pair of macros 

that substitute for Word's command to toggle change tracking.  Tested 

in 2003, which is what I have available at the moment. 

> 

> If change tracking is on, it's turned off with a reminder appearing 

one minute later.  You can change that time interval. 

> 

> If change tracking is off, it gives you the choice of leaving it 

off or turning it back on.  No reminder message in either case. 

> 

> Limitations:  you have to respond to the initial message box.  And 

there is only one reminder message.  It doesn't continue to nag you. 

> 

> Potential danger:  you're replacing one of Word's commands.  The 

TRK toggle and the toggle in the menus and toolbars (and ribbon, I 

assume) run the macro, not Word's internal code.  I've done some 

testing, but not enough to ensure that there are no hidden dangers. 

You can change the macro name to something else, but then you'll have 

to use some other method of invoking it other than the Word UI. 

> 

> All that said, here are the macros.  Use at your own risk.  Let me know if they don't work for you. 

> 

> Sub ToolsRevisionMarksToggle() 

> Dim Msg, Style, Title, Response 

> Style = vbYesNo + vbCritical + vbDefaultButton2 

> Msg = "Track Changes is already off.  Turn it back on?" 

> Title = "Track Changes with Reminder" 

> If ActiveDocument.TrackRevisions = False Then 

>     Response = MsgBox(Msg, Style, Title) 

>     If Response = vbYes Then    ' User chose Yes. 

>         ActiveDocument.TrackRevisions = True 

>     Else    ' User chose No. 

>         MsgBox "ok, it's still off." 

>     End If 

> Else 

>    MsgBox "Track Changes going off.  Reminder in 1 minute"  'change text of message if you change the 

reminder time 

>     ActiveDocument.TrackRevisions = False 



>     alertTime = Now + TimeValue("00:01:00") 

>        ' change the value in parentheses to whatever you want. Format is hours:minutes:seconds. 

>     Application.OnTime alertTime, "TCReminderMacro" 

> End If 

> End Sub 

> 

> Sub TCReminderMacro() 

> If ActiveDocument.TrackRevisions = False Then 

>   MsgBox "Don't forget to turn Track Changes back on" 

> End If 

> End Sub 

> * Posting rules & information: http://www.copyediting-l.info 

> * Job opportunity messages must be tagged "JOB-OP:" 

> 

 

##################################################### 

 

Background colours: 

 

Selection.Shading.BackgroundPatternColorIndex = wdTurquoise 

 

##################################################### 

Sub Test() 

' Version 15.09.11 

' Display a highlighted (or selected) quote 

 

 

Dim cmnt As Word.Comment 

totCmnts = ActiveDocument.Comments.Count 

ReDim Auth(totCmnts) As String 

ReDim cmText(totCmnts) As String 

CR2 = vbCrLf & vbCrLf 

Authlist = "" 

numAuths = 0 

For i = 1 To totCmnts 

  Set cmnt = ActiveDocument.Comments(i) 

 

'  sdfsd = cmnt.Creator 

'  sdsd = cmnt.Initial 

  Auth(i) = cmnt.Initial 

  cmText(i) = cmnt.Range 

  If Left(cmText(i), Len(Auth(i))) <> Auth(i) Then 

    cmText(i) = Auth(i) & ": " & cmText(i) 

  End If 

'  If InStr(Authlist, Auth(i)) = 0 Then 

'    numAuths = numAuths + 1 

'    Authlist = Authlist & Auth(i) & "|" 

'  End If 

Next i 

 

Documents.Add 

Selection.TypeParagraph 

For i = 1 To totCmnts 

  startHere = Selection.Start 

  Selection.TypeText Text:="[" & cmText(i) & CR2 

  endHere = Selection.Start 

  nowLen = Selection.Start - startHere 



  Selection.End = startHere + InStr(cmText(i), ":") 

  extraBit = Trim(Str(i)) & "]" 

  Selection.TypeText Text:=extraBit 

  Selection.Start = endHere + Len(extraBit) 

  Selection.End = Selection.Start 

Next i 

 

Exit Sub 

For au = 1 To numAuths 

  nameEnd = InStr(Authlist, "|") 

  thisName = Left(Authlist, nameEnd - 1) 

  Authlist = Mid(Authlist, nameEnd + 1) 

  Set rng = ActiveDocument.Content 

  i = 1 

  With rng.Find 

    .ClearFormatting 

    .Replacement.ClearFormatting 

    .Text = "^p" & thisName & ":" 

    .Wrap = wdFindContinue 

    .Replacement.Text = "" 

    .Forward = True 

    .MatchWildcards = False 

    .Execute 

  End With 

 

  While rng.Find.Found 

    theEnd = rng.End 

    rng.Start = rng.Start + 1 

    rng.End = rng.Start 

    rng.InsertAfter "[" 

' rng.Select 

    rng.Start = theEnd 

    rng.InsertAfter Str(i) & "]" 

    rng.Start = rng.End 

    i = i + 1 

    rng.Find.Execute 

rng.Select 

  Wend 

Next au 

Exit Sub 

 

 

achar = "a" 

 

MsgBox (Val(achar)) 

Exit Sub 

 

##################################################### 

 

Bridge characters: clubs, diamonds, hearts, spades 

 

Sub SuitToText() 

For Each fld In ActiveDocument.Fields 

  myText = fld.Code.Text 

  codePos = InStr(myText, "SYMBOL ") + 7 

  myCode = Mid(myText, codePos, 3) 

  Select Case Val(myCode) 



    Case 167: mySuit = "cx" 

    Case 168: mySuit = "dx" 

    Case 169: mySuit = "hx" 

    Case 170: mySuit = "sx" 

    Case Else: mySuit = "??????" 

  End Select 

  fld.Select 

  Selection.TypeText Text:=mySuit 

Next 

End Sub 

 

##################################################### 

Sub NewMembers() 

' Version 23.07.11 

' Create alpha list in a paragraph 

Selection.WholeStory 

Selection.Fields.Unlink 

Set rng = ActiveDocument.Content 

With rng.Find 

  .ClearFormatting 

  .Replacement.ClearFormatting 

  .Text = "[0-9][!^13]@ ^= " 

  .Wrap = wdFindContinue 

  .Replacement.Text = "" 

  .MatchWildcards = True 

  .Execute Replace:=wdReplaceAll 

End With 

 

With rng.Find 

  .Text = " ^= *^13" 

  .Replacement.Text = "^p" 

  .MatchWildcards = True 

  .Execute Replace:=wdReplaceAll 

End With 

 

With rng.Find 

  .Text = "^p^p" 

  .Replacement.Text = "^p" 

  .MatchWildcards = False 

  .Execute Replace:=wdReplaceAll 

End With 

 

With rng.Find 

  .Text = " " 

  .Replacement.Text = "^t" 

  .MatchWildcards = False 

  .Execute Replace:=wdReplaceAll 

End With 

 

Selection.WholeStory 

Selection.ConvertToTable Separator:=wdSeparateByTabs, NumColumns:=2, AutoFitBehavior:=wdAutoFitFixed 

With Selection.Tables(1) 

  .Style = "Table Grid" 

  .ApplyStyleHeadingRows = True 

  .ApplyStyleLastRow = False 

  .ApplyStyleFirstColumn = True 

  .ApplyStyleLastColumn = False 



End With 

Selection.Sort ExcludeHeader:=False, FieldNumber:="Column 2", _ 

    SortFieldType:=wdSortFieldAlphanumeric, SortOrder:=wdSortOrderAscending, _ 

    FieldNumber2:="", SortFieldType2:=wdSortFieldAlphanumeric, SortOrder2:= _ 

    wdSortOrderAscending, FieldNumber3:="", SortFieldType3:= _ 

    wdSortFieldAlphanumeric, SortOrder3:=wdSortOrderAscending, Separator:= _ 

    wdSortSeparateByCommas, SortColumn:=False, CaseSensitive:=False, _ 

    LanguageID:=wdEnglishUK, SubFieldNumber:="Paragraphs", SubFieldNumber2:= _ 

    "Paragraphs", SubFieldNumber3:="Paragraphs" 

Selection.WholeStory 

Selection.Cut 

Selection.PasteAndFormat (wdFormatPlainText) 

Set rng = ActiveDocument.Content 

With rng.Find 

  .ClearFormatting 

  .Replacement.ClearFormatting 

  .Text = "^t" 

  .Wrap = wdFindContinue 

  .Replacement.Text = " " 

  .MatchWildcards = True 

  .Execute Replace:=wdReplaceAll 

End With 

With rng.Find 

  .Text = "^p" 

  .Replacement.Text = ", " 

  .MatchWildcards = False 

  .Execute Replace:=wdReplaceAll 

End With 

 

End Sub 

 

##################################################### 

Sub RefGrabber() 

' Version 19.10.10 

' Select the current reference, then say "Not in list" 

Selection.End = Selection.Start 

oldFind = Selection.Find.Text 

oldReplace = Selection.Find.Replacement.Text 

 

' Find a number 

startHere = Selection.Start 

With Selection.Find 

  .ClearFormatting 

  .Text = ")" 

  .Replacement.Text = "" 

  .MatchWildcards = False 

  .Execute 

End With 

 

Selection.Start = startHere 

 

Selection.End = Selection.End - 1 

' Restore Find to original 

With Selection.Find 

  .Text = oldFind 

  .Replacement.Text = oldReplace 

End With 



  Application.Run MacroName:="Normal.NewMacros.CommentAdd2" 

 

End Sub 

 

 

##################################################### 

Sub PDFpagerSimple() 

' Version 11.05.11 

' Highlight all the page numbers (left aligned) 

 

numDashes = 20 

FontSize = 24 

 

' Find the first number 

Set rng = ActiveDocument.Range 

With rng.Find 

  .ClearFormatting 

  .Replacement.ClearFormatting 

  .Text = "\>\>[0-9]@\<\<" 

  .MatchWildcards = True 

  .Replacement.Text = "" 

  .Execute 

End With 

 

If rng.Find.Found = False Then 

  MsgBox ("Mark first and last page numbers, e.g. >>1<<") 

  Exit Sub 

End If 

 

startHere = rng.Start 

rng.Start = rng.Start + 2 

firstNum = Val(rng) 

rng.Start = rng.End + 2 

 

' Find the final number 

With rng.Find 

  .ClearFormatting 

  .Replacement.ClearFormatting 

  .Text = "\>\>[0-9]@\<\<" 

  .MatchWildcards = True 

  .Replacement.Text = "" 

  .Execute 

End With 

If rng.Find.Found = False Then 

  MsgBox ("Mark first and last page numbers like this: >>123<<") 

  Exit Sub 

End If 

 

rng.Start = rng.Start + 2 

lastNum = Val(rng) 

 

Set rng = ActiveDocument.Range 

rng.Start = startHere 

For i = lastNum - 1 To firstNum + 1 Step -1 

  With rng.Find 

    .ClearFormatting 

    .Replacement.ClearFormatting 



    .Text = "^p" & Trim(Str(i)) 

    .MatchWildcards = False 

    .Forward = False 

    .Replacement.Text = "" 

    .Execute 

  End With 

  rng.Select 

  If rng.Find.Found = True Then 

    rng.MoveStart wdCharacter, 1 

    rng.InsertBefore ">>" 

    rng.InsertAfter "<<" 

  Else 

    rng.InsertBefore vbCrLf & ">>" & Trim(Str(i)) & "<<" & vbCrLf 

  End If 

  rng.End = rng.Start 

  StatusBar = "Page: " & Str(i) 

Next i 

 

dottedLine = "" 

For i = 1 To numDashes 

  dottedLine = dottedLine & Chr(150) & " " 

Next i 

 

Set rng = ActiveDocument.Range 

With rng.Find 

  .ClearFormatting 

  .Replacement.ClearFormatting 

  .Text = "^13([ixv]@)^13" 

  .Replacement.Text = "^p>>\1<<^p" 

  .Replacement.Font.Size = FontSize 

  .Forward = True 

  .Replacement.Font.Bold = True 

  .MatchWildcards = True 

  .Execute Replace:=wdReplaceAll 

End With 

 

Set rng = ActiveDocument.Range 

With rng.Find 

  .ClearFormatting 

  .Replacement.ClearFormatting 

  .Text = "\>\>[0-9ixv]@\<\<" 

  .Replacement.Text = dottedLine & "^p^&" 

  .Replacement.Font.Size = FontSize 

  .Replacement.Font.Bold = True 

  .MatchWildcards = True 

  .Execute Replace:=wdReplaceAll 

End With 

 

Selection.HomeKey Unit:=wdStory 

With Selection.Find 

  .ClearFormatting 

  .Replacement.ClearFormatting 

  .Text = ">>" & Trim(Str(firstNum)) & "<<" 

  .MatchWildcards = False 

  .Replacement.Text = "" 

  .Execute 

End With 



Selection.End = Selection.Start 

End Sub 

Sub PDFpagerOddEven() 

' Version 11.05.11 

' Highlight all the page numbers alternately left & right 

 

numDashes = 20 

FontSize = 24 

 

' Find the first number 

Set rng = ActiveDocument.Range 

With rng.Find 

  .ClearFormatting 

  .Replacement.ClearFormatting 

  .Text = "\>\>[0-9]@\<\<" 

  .MatchWildcards = True 

  .Replacement.Text = "" 

  .Execute 

End With 

 

If rng.Find.Found = False Then 

  MsgBox ("Mark first and last page numbers, e.g. >>1<<") 

  Exit Sub 

End If 

 

startHere = rng.Start 

rng.Start = rng.Start + 2 

firstNum = Val(rng) 

rng.Start = rng.End + 2 

 

' Find the final number 

With rng.Find 

  .ClearFormatting 

  .Replacement.ClearFormatting 

  .Text = "\>\>[0-9]@\<\<" 

  .MatchWildcards = True 

  .Replacement.Text = "" 

  .Execute 

End With 

endHere = rng.Start 

If rng.Find.Found = False Then 

  MsgBox ("Mark first and last page numbers like this: >>123<<") 

  Exit Sub 

End If 

 

rng.Start = rng.Start + 2 

lastNum = Val(rng) 

 

Set rng = ActiveDocument.Range 

'  rng.Start = endHere 

For i = lastNum - 1 To firstNum + 1 Step -1 

  If i Mod 2 = 0 Then 

    findText = "^p" & Trim(Str(i)) 

  Else 

    findText = Trim(Str(i)) & "^p" 

  End If 

  With rng.Find 



    .ClearFormatting 

    .Replacement.ClearFormatting 

    .Text = findText 

    .Forward = False 

    .MatchWildcards = False 

    .Replacement.Text = "" 

    .Execute 

  End With 

  If rng.Find.Found = True Then 

    If i Mod 2 = 0 Then 

      rng.MoveStart wdCharacter, 1 

    Else 

      rng.MoveEnd wdCharacter, -1 

    End If 

    rng.InsertBefore ">>" 

    rng.InsertAfter "<<" 

  Else 

    rng.InsertBefore vbCrLf & ">>" & Trim(Str(i)) & "<<" & vbCrLf 

  End If 

  rng.End = rng.Start 

  StatusBar = "Page: " & Str(i) 

Next i 

 

dottedLine = "" 

For i = 1 To numDashes 

  dottedLine = dottedLine & Chr(150) & " " 

Next i 

 

Set rng = ActiveDocument.Range 

With rng.Find 

  .ClearFormatting 

  .Replacement.ClearFormatting 

  .Text = "^13([ixv]@)^13" 

  .Replacement.Text = "^p>>\1<<^p" 

  .Replacement.Font.Size = FontSize 

  .Replacement.Font.Bold = True 

  .Forward = True 

  .MatchWildcards = True 

  .Execute Replace:=wdReplaceAll 

End With 

 

Set rng = ActiveDocument.Range 

With rng.Find 

  .ClearFormatting 

  .Replacement.ClearFormatting 

  .Text = "\>\>[0-9ixv]@\<\<" 

  .Replacement.Text = "^p" & dottedLine & "^p^&" 

  .Replacement.Font.Size = FontSize 

  .Replacement.Font.Bold = True 

  .MatchWildcards = True 

  .Execute Replace:=wdReplaceAll 

End With 

 

Set rng = ActiveDocument.Range 

With rng.Find 

  .ClearFormatting 

  .Replacement.ClearFormatting 



  .Text = "^p^p" 

  .Replacement.Text = "^p" 

  .MatchWildcards = False 

  .Execute Replace:=wdReplaceAll 

End With 

 

Selection.HomeKey Unit:=wdStory 

With Selection.Find 

  .ClearFormatting 

  .Replacement.ClearFormatting 

  .Text = ">>" & Trim(Str(firstNum)) & "<<" 

  .MatchWildcards = False 

  .Replacement.Text = "" 

  .Execute 

End With 

Selection.End = Selection.Start 

 

End Sub 

 

Sub PDFpagerRightOnly() 

' Version 11.05.11 

' Highlight all the page numbers (right aligned) 

 

numDashes = 20 

FontSize = 24 

 

' Find the first number 

Set rng = ActiveDocument.Range 

With rng.Find 

  .ClearFormatting 

  .Replacement.ClearFormatting 

  .Text = "\>\>[0-9]@\<\<" 

  .MatchWildcards = True 

  .Replacement.Text = "" 

  .Execute 

End With 

 

If rng.Find.Found = False Then 

  MsgBox ("Mark first and last page numbers, e.g. >>1<<") 

  Exit Sub 

End If 

 

startHere = rng.Start 

rng.Start = rng.Start + 2 

firstNum = Val(rng) 

rng.Start = rng.End + 2 

 

' Find the final number 

With rng.Find 

  .ClearFormatting 

  .Replacement.ClearFormatting 

  .Text = "\>\>[0-9]@\<\<" 

  .MatchWildcards = True 

  .Replacement.Text = "" 

  .Execute 

End With 

If rng.Find.Found = False Then 



  MsgBox ("Mark first and last page numbers like this: >>123<<") 

  Exit Sub 

End If 

 

rng.Start = rng.Start + 2 

lastNum = Val(rng) 

 

Set rng = ActiveDocument.Range 

rng.Start = startHere 

For i = lastNum - 1 To firstNum + 1 Step -1 

  With rng.Find 

    .ClearFormatting 

    .Replacement.ClearFormatting 

 

' I've added a letter or a space before the number 

 

    .Text = "[a-zA-Z ]" & Trim(Str(i)) & "^13" 

    .MatchWildcards = True 

    .Forward = False 

    .Replacement.Text = "" 

    .Execute 

  End With 

  If rng.Find.Found = True Then 

 

' so I have to move the start of the find forward one char 

 

    rng.MoveStart wdCharacter, 1 

    rng.MoveEnd wdCharacter, -1 

    rng.InsertBefore ">>" 

    rng.InsertAfter "<<" 

  Else 

    rng.InsertBefore vbCrLf & ">>" & Trim(Str(i)) & "<<" & vbCrLf 

  End If 

  rng.End = rng.Start 

  StatusBar = "Page: " & Str(i) 

Next i 

 

dottedLine = "" 

For i = 1 To numDashes 

  dottedLine = dottedLine & Chr(150) & " " 

Next i 

 

Set rng = ActiveDocument.Range 

With rng.Find 

  .ClearFormatting 

  .Replacement.ClearFormatting 

  .Text = "\>\>[0-9ixv]@\<\<" 

  .Replacement.Text = dottedLine & "^p^&" 

  .Replacement.Font.Size = FontSize 

  .Replacement.Font.Bold = True 

  .MatchWildcards = True 

  .Execute Replace:=wdReplaceAll 

End With 

 

Selection.HomeKey Unit:=wdStory 

With Selection.Find 

  .ClearFormatting 



  .Replacement.ClearFormatting 

  .Text = ">>" & Trim(Str(firstNum)) & "<<" 

  .MatchWildcards = False 

  .Replacement.Text = "" 

  .Execute 

End With 

Selection.End = Selection.Start 

 

End Sub 

 

Sub PDFPagerManual() 

 

numberAtBottomPage = True 

numDashes = 20 

FontSize = 24 

 

dottedLine = "" 

For i = 1 To numDashes 

  dottedLine = dottedLine & Chr(150) & " " 

Next i 

 

If Asc(Selection) = Asc("<") Then Selection.MoveEnd wdCharacter, -1 

Selection.Words(1).Select 

startHere = Selection.Start 

wasNum = Val(Selection) 

nextNum = wasNum + 1 

Selection.Start = Selection.End 

If Asc(Selection) <> Asc("<") Then 

  Selection.Start = startHere 

  If numberAtBottomPage = False Then Selection.InsertBefore vbCrLf & dottedLine 

  Selection.InsertBefore ">>" 

  Selection.InsertAfter "<<" & vbCrLf 

  If numberAtBottomPage = True Then Selection.InsertAfter dottedLine & vbCrLf 

  Selection.Font.Size = FontSize 

  Selection.Font.Bold = True 

  Selection.Start = Selection.End 

End If 

gotOne = False 

aveLength = 0 

Do 

  wasHere = Selection.Start 

  With Selection.Find 

    .ClearFormatting 

    .Replacement.ClearFormatting 

    .Text = Trim(Str(nextNum)) 

    .MatchWildcards = False 

    .Forward = True 

    .Replacement.Text = "" 

    .Execute 

  End With 

  If Selection.Find.Found = True Then 

    myResponse = MsgBox("OK?", vbQuestion + vbYesNoCancel) 

    hereNow = Selection.Start 

    If aveLength = 0 Then 

      aveLength = hereNow - wasHere 

    Else 

      aveLength = (hereNow - startHere) / (nextNum - wasNum) 



    End If 

    If (hereNow - wasHere) > 2 * aveLength Then 

      Beep 

          Beep 

      myTime = Timer 

      Do 

      Loop Until Timer > myTime + 0.1 

    End If 

    If myResponse = vbCancel Then Selection.Find.Text = "<<": Exit Sub 

    If myResponse = vbYes Then 

      justHere = Selection.Start 

      If numberAtBottomPage = False Then Selection.InsertBefore vbCrLf & dottedLine 

      Selection.InsertBefore ">>" 

      Selection.InsertAfter "<<" & vbCrLf 

      If numberAtBottomPage = True Then Selection.InsertAfter dottedLine & vbCrLf 

      Selection.Start = justHere 

      Selection.Font.Size = FontSize 

      Selection.Font.Bold = True 

      Selection.Start = Selection.End 

      gotOne = True 

      nextNum = nextNum + 1 

    End If 

  Else 

    Selection.Paragraphs(1).Range.Select 

    Selection.Start = Selection.End 

    justHere = Selection.Start 

    If numberAtBottomPage = False Then Selection.InsertBefore vbCrLf & dottedLine 

    Selection.InsertBefore ">>" & Trim(Str(nextNum)) & "<<" & vbCrLf 

    Selection.InsertAfter "<<" & vbCrLf 

    If numberAtBottomPage = True Then Selection.InsertAfter dottedLine & vbCrLf 

    Selection.Start = justHere 

    Selection.Font.Size = FontSize 

    Selection.Font.Bold = True 

    gotOne = False 

  End If 

Loop Until gotOne = False 

Selection.Find.Text = "<<" 

End Sub 

 

##################################################### 

 

Unfinished pair of selection extenders 

 

Sub FindExtend() 

startWas = Selection.Start 

endWas = Selection.End 

nowText = Selection.Find.Text 

myText = InputBox("Find?", "Extend finder", nowText) 

 

Selection.Start = Selection.End 

With Selection.Find 

  .ClearFormatting 

  .Replacement.ClearFormatting 

  If Len(myText) = 0 Then .Text = myText 

  .Forward = True 

  .MatchCase = False 

  .Wrap = False 



  .MatchWildcards = False 

  .Execute 

End With 

Selection.End = rng.End 

 

End Sub 

 

Sub FindExtendUp() 

startWas = Selection.Start 

endWas = Selection.End 

nowText = Selection.Find.Text 

myText = InputBox("Find?", "Extend finder", nowText) 

 

Selection.End = Selection.Start 

With Selection.Find 

  .ClearFormatting 

  .Replacement.ClearFormatting 

  If Len(myText) > 0 Then .Text = myText 

  .Forward = False 

  .MatchCase = False 

  .Wrap = False 

  .MatchWildcards = False 

  .Execute 

End With 

Selection.End = endWas 

End Sub 

 

##################################################### 

Date: Wed, 13 Apr 2011 12:21:43 -0400 

Subject: Re: [CE-L] TOOLS: search for tables? 

To: COPYEDITING-L@LISTSERV.INDIANA.EDU 

 

For tables, try this macro.  It goes through the active doc, stops at each table and asks you if you want to convert to 

text, then does it (with tabs as separators) if you say yes.  If you select Cancel, it stops the search.  Otherwise it 

goes to the next table and asks. 

 

To separate by commas, change "wdSeparateByTabs" to " wdSeparateByCommas ".  To separate by paragraphs, 

change it to "wdSeparateByParagraphs". 

 

-  Jessica 

 

Sub convertToText() 

' 

' 

' find tables and convert to text 

 

' Now let them choose for each one 

 

Dim mytable As Table 

Dim msgText As String 

Dim msgStyle As String 

Dim msgTitle As String 

Dim Response 

 

msgStyle = vbYesNoCancel + vbQuestion 

msgText = "Do you want to convert this table to text?" 

msgTitle = "Converting to text" 



 

For Each mytable In ActiveDocument.Tables 

    mytable.Select 

    Response = MsgBox(msgTitle, msgStyle, msgText) 

    If Response = vbCancel Then    ' User chose Cancel so we kill the process 

        Exit Sub 

    ElseIf Response = vbYes Then  ' convert 

       Selection.Rows.convertToText Separator:=wdSeparateByTabs, NestedTables:= _ 

        True 

    Else 

    ' user picked no, so go to the next table 

    End If 

 Next mytable 

 

End Sub 

 

* Obtain permission before forwarding. Pix: http://bit.ly/7fUx9O 

* Stuff: http://bit.ly/5PONhz FAQ: http://bit.ly/4ocsZ2 

* Sub: http://bit.ly/8dsD41 

* Job opportunity messages must be tagged "JOB-OP:" 

 

 

----- 

No virus found in this message. 

Checked by AVG - www.avg.com 

Version: 10.0.1321 / Virus Database: 1500/3571 - Release Date: 04/13/11 

 

 

 

##################################################### 

Dim theWord As String 

For R = 1 To 14 

  Set theLine = ActiveDocument.Paragraphs(R).Range 

  For c = 1 To 8 

    theWord = theLine.Words(2 * c - 1) 

    Set rng = ActiveDocument.Range 

    With rng.Find 

      .ClearFormatting 

      .Replacement.ClearFormatting 

      .Text = "ZCZC" & theWord 

      .Replacement.Text = "D" & Trim(Str(R)) & "-" & Trim(Str(c)) 

      .MatchWildcards = False 

      .Execute Replace:=wdReplaceOne 

    End With 

 

  Next c 

Next R 

 

##################################################### 

Set wordList = ActiveDocument 

wordList.Windows(1).WindowState = wdWindowStateMaximize 

 

##################################################### 

 

Sub Docalyse() 

' Version 03.03.11 

 



myDocStats = False 

 

'(c)2009-11 Paul Beverley; Version dated 03.03.2011 

' http://www.archivepub.co.uk/FRedit 

' Paul Beverley, Nutwood, Middle Road, Norwich, NR13 5EG 

' Paul@archivepub.co.uk 

 

 

doFRedit = True 

 

' Don't highlight these characters: 

myExceptions = "–—•º£" & Chr(145) & Chr(146) & Chr(147) & Chr(148) 

 

' listFile = "C:\Documents and Settings\Paul\My Documents\" _ 

     & "DocAlyseList.doc" 

 

listFile = "C:\Program Files\VirtualAcorn\VirtualRPC-SA" _ 

     & "\HardDisc4\MyFiles2\WIP\zzzTheBook\zFRedit\zzAssess.doc" 

 

If doFRedit = False Then GoTo nextbit 

' Open the FRedit list just to test if it's there 

Documents.Open listFile 

ActiveDocument.Close SaveChanges:=False 

 

' Copy the original text 

nextbit: 

ActiveDocument.Range.Copy 

ActiveDocument.TrackRevisions = False 

 

' First assessment document 

Documents.Add 

ActiveDocument.TrackRevisions = False 

Selection.WholeStory 

Selection.LanguageID = wdEnglishUK 

Selection.NoProofing = False 

Application.CheckLanguage = False 

 

Set firstDoc = ActiveDocument 

Selection.TypeText Text:=vbCrLf & vbCrLf 

 

Selection.Paste 

WordBasic.AcceptAllChangesInDoc 

 

' Second assessment document 

Documents.Add 

Set secondDoc = ActiveDocument 

Selection.Paste 

WordBasic.AcceptAllChangesInDoc 

If ActiveDocument.Comments.Count > 0 Then ActiveDocument.DeleteAllComments 

ActiveDocument.Range.HighlightColorIndex = wdNoHighlight 

Selection.WholeStory 

Selection.LanguageID = wdEnglishUK 

Selection.NoProofing = False 

Application.CheckLanguage = False 

 

' Create a workspace 

Documents.Add 



Set scrapPad = ActiveDocument 

 

' Go back to first assessment document 

firstDoc.Activate 

Selection.HomeKey Unit:=wdStory 

 

 

' Count various features 

thisMany = ActiveDocument.Comments.Count 

If thisMany > 0 Then 

  Selection.TypeText Text:="Number of comments:  " _ 

    & thisMany & vbCrLf & vbCrLf 

  ActiveDocument.DeleteAllComments 

End If 

 

fNotes = ActiveDocument.Footnotes.Count 

If fNotes > 0 Then 

  Selection.TypeText Text:="Number of footnotes:  " _ 

    & fNotes & vbCrLf & vbCrLf 

End If 

 

eNotes = ActiveDocument.Endnotes.Count 

If eNotes > 0 Then 

  Selection.TypeText Text:="Number of endnotes:  " _ 

    & eNotes & vbCrLf & vbCrLf 

End If 

 

bMarks = ActiveDocument.Bookmarks.Count 

If bMarks > 0 Then 

  Selection.TypeText Text:="Number of bookmarks:  " _ 

    & bMarks & vbCrLf & vbCrLf 

  For Each myBM In ActiveDocument.Bookmarks 

    myBM.Delete 

  Next 

End If 

 

tboxes = ActiveDocument.Shapes.Count 

' These get counted later 

 

thisMany = ActiveDocument.Lists.Count 

If thisMany > 0 Then 

  Selection.TypeText Text:="Number of lists:  " _ 

    & thisMany & vbCrLf & vbCrLf 

End If 

 

thisMany = ActiveDocument.Tables.Count 

If thisMany > 0 Then 

  Selection.TypeText Text:="Number of tables:  " _ 

    & thisMany & vbCrLf & vbCrLf 

End If 

 

thisMany = ActiveDocument.Fields.Count 

If thisMany > 0 Then 

  Selection.TypeText Text:="Number of fields:  " _ 

    & thisMany & vbCrLf & vbCrLf 

End If 

 



thisMany = ActiveDocument.FormFields.Count 

If thisMany > 0 Then 

  Selection.TypeText Text:="Number of form fields:  " _ 

    & thisMany & vbCrLf & vbCrLf 

End If 

 

thisMany = ActiveDocument.Hyperlinks.Count 

If thisMany > 0 Then 

  Selection.TypeText Text:="Number of hyperlinks:  " _ 

    & thisMany & vbCrLf & vbCrLf 

End If 

 

thisMany = ActiveDocument.Indexes.Count 

If thisMany > 0 Then 

  Selection.TypeText Text:="Number of indexes:  " _ 

    & thisMany & vbCrLf & vbCrLf 

End If 

 

thisMany = ActiveDocument.SmartTags.Count 

If thisMany > 0 Then 

  Selection.TypeText Text:="Number of smart tags:  " _ 

       & thisMany & vbCrLf & _ 

       "(Tools--Autocorrect Options--Smart Tags" & _ 

       "--Remove Smart Tags)" & vbCrLf & vbCrLf 

End If 

 

thisMany = ActiveDocument.InlineShapes.Count 

If thisMany > 0 Then 

  Selection.TypeText Text:="Number of equations:  " _ 

    & thisMany & vbCrLf & vbCrLf 

End If 

 

' Record all the readability stats 

If myDocStats = True Then 

  DocStats = "aazz Readability Statistics" & vbCrLf 

  With ActiveDocument.Content 

    For i = 1 To 10 

      DocStats = DocStats & .ReadabilityStatistics(i) & ": " _ 

          & .ReadabilityStatistics(i).Value & vbCrLf 

    Next i 

  End With 

End If 

Selection.TypeText Text:="aazz Quote characters" & vbCrLf 

 

' Count the punctuation: first open single quotes 

Set rng = ActiveDocument.Range 

thisMany = -1 

Do 

  With rng.Find 

    .ClearFormatting 

    .Replacement.ClearFormatting 

    .MatchWildcards = False 

    .Text = "^0145" 

    .Replacement.Text = "" 

    .Execute 

  End With 

  thisMany = thisMany + 1 



Loop Until rng.Find.Found = False 

 

Selection.TypeText Text:="Single open:  " _ 

    & thisMany & vbCrLf 

ordinary = countIt 

 

' ...closed single quotes 

Set rng = ActiveDocument.Range 

thisMany = -1 

Do 

  With rng.Find 

    .ClearFormatting 

    .Replacement.ClearFormatting 

    .MatchWildcards = False 

    .Text = "^0146" 

    .Replacement.Text = "" 

    .Execute 

  End With 

  thisMany = thisMany + 1 

Loop Until rng.Find.Found = False 

 

Selection.TypeText Text:="Single closed (= apostrophe):  " _ 

    & thisMany & vbCrLf & vbCrLf 

ordinary = countIt 

 

' ...open double quotes 

Set rng = ActiveDocument.Range 

thisMany = -1 

Do 

  With rng.Find 

    .ClearFormatting 

    .Replacement.ClearFormatting 

    .MatchWildcards = False 

    .Text = "^0147" 

    .Replacement.Text = "" 

    .Execute 

  End With 

  thisMany = thisMany + 1 

Loop Until rng.Find.Found = False 

 

Selection.TypeText Text:="Double open:  " _ 

    & thisMany & vbCrLf 

ordinary = countIt 

 

' ...closed double quotes 

Set rng = ActiveDocument.Range 

thisMany = -1 

Do 

  With rng.Find 

    .ClearFormatting 

    .Replacement.ClearFormatting 

    .MatchWildcards = False 

    .Text = "^0148" 

    .Replacement.Text = "" 

    .Execute 

  End With 

  thisMany = thisMany + 1 



Loop Until rng.Find.Found = False 

 

Selection.TypeText Text:="Double closed:  " _ 

    & thisMany & vbCrLf & vbCrLf 

ordinary = countIt 

 

' ...unsexed double quotes 

 

Set rng = ActiveDocument.Range 

thisMany = -1 

Do 

  With rng.Find 

    .ClearFormatting 

    .Replacement.ClearFormatting 

    .MatchWildcards = False 

    .Text = "^39" 

    .Replacement.Text = "" 

    .Execute 

  End With 

  thisMany = thisMany + 1 

Loop Until rng.Find.Found = False 

 

Selection.TypeText Text:="Single straight:  " _ 

    & thisMany & vbCrLf 

ordinary = countIt 

 

' ...unsexed single quotes 

Set rng = ActiveDocument.Range 

thisMany = -1 

Do 

  With rng.Find 

    .ClearFormatting 

    .Replacement.ClearFormatting 

    .MatchWildcards = False 

    .Text = "^34" 

    .Replacement.Text = "" 

    .Execute 

  End With 

  thisMany = thisMany + 1 

Loop Until rng.Find.Found = False 

 

Selection.TypeText Text:="Double straight:  " _ 

    & thisMany & vbCrLf 

ordinary = countIt 

 

' Check to see what styles are used 

allStyles = "aazz Styles used:" & vbCrLf 

someStyles = False 

 

StatusBar = "Press Ctrl-Break to stop.      " & _ 

     "Checking styles." 

 

' If necessary, check footnotes, then endnotes, 

' then textboxes. 

countShapes = 0 

For hit = 1 To 4 

  If hit = 1 Then 



    If fNotes > 0 Then 

      goes = fNotes 

    Else 

      hit = 2 

    End If 

  End If 

  If hit = 2 Then 

    If eNotes > 0 Then 

      goes = eNotes 

    Else 

      hit = 3 

    End If 

  End If 

  If hit = 3 Then 

    If tboxes > 0 Then 

      goes = tboxes 

    Else 

      hit = 4 

    End If 

  End If 

  If hit = 4 Then goes = 1 

  For myGo = 1 To goes 

    If hit = 1 Then 

      Set rng = ActiveDocument.Footnotes(myGo).Range 

    End If 

    If hit = 2 Then 

      Set rng = ActiveDocument.Endnotes(myGo).Range 

    End If 

    If hit = 3 Then 

      Do 

      ' Only check the text box if it has any text in it 

        someText = ActiveDocument.Shapes(myGo).TextFrame.HasText 

        If someText Then 

          Set rng = ActiveDocument.Shapes(myGo).TextFrame.TextRange 

        Else 

          countShapes = countShapes + 1 

          myGo = myGo + 1 

        End If 

      Loop Until someText Or myGo > goes 

    End If 

    If myGo > goes Then Exit For 

    If hit = 4 Then 

      Set rng = ActiveDocument.Range 

    End If 

 

' Remove all the highlighting from all text in normal style 

    rng.HighlightColorIndex = wdYellow 

    With rng.Find 

      .ClearFormatting 

      .Replacement.ClearFormatting 

      .MatchWildcards = False 

      .Text = "" 

      .Style = "Normal" 

      .Replacement.Text = "" 

      .Replacement.Highlight = False 

      .Execute Replace:=wdReplaceAll 

    End With 



    Do 

      rng.Start = 0: rng.End = 0 

      With rng.Find 

        .ClearFormatting 

        .Replacement.ClearFormatting 

        .MatchWildcards = False 

        .Text = "^p" 

        .Highlight = True 

        .Replacement.Text = "^p" 

        .Replacement.Highlight = False 

        .Execute 

      End With 

      If rng.Find.Found Then 

        someStyles = True 

        thisStyle = rng.Style 

        rng.Start = 0: rng.End = 0 

        With rng.Find 

          .ClearFormatting 

          .Replacement.ClearFormatting 

          .MatchWildcards = False 

          .Text = "" 

          .Style = thisStyle 

          .Replacement.Text = "" 

          .Replacement.Highlight = False 

          .Execute Replace:=wdReplaceAll 

        End With 

        If InStr(allStyles, thisStyle) = 0 Then _ 

             allStyles = allStyles & thisStyle & vbCrLf 

      Else 

        thisStyle = "" 

      End If 

    Loop Until thisStyle = "" 

  Next myGo 

Next hit 

 

tboxes = tboxes - countShapes 

If tboxes > 0 Then 

  Selection.TypeText Text:="Number of text boxes:  " _ 

    & tboxes - countShapes & vbCrLf & vbCrLf 

End If 

If countShapes > 0 Then 

  Selection.TypeText Text:="Number of shapes:  " _ 

    & countShapes & vbCrLf & vbCrLf 

End If 

 

 

' Highlight font attributes and any 'funny' characters 

' that are not those in the exception list above. 

 

anyBold = False 

anyItalic = False 

anySuper = False 

anySub = False 

anySymbol = False 

anyUline = False 

anyAtAll = False 

anyColour = False 



charStyles = "Normal" 

 

For hit = 1 To 4 

  If hit = 1 Then 

    If fNotes > 0 Then 

      goes = fNotes 

    Else 

      hit = 2 

    End If 

  End If 

  If hit = 2 Then 

    If eNotes > 0 Then 

      goes = eNotes 

    Else 

      hit = 3 

    End If 

  End If 

  If hit = 3 Then 

    If tboxes > 0 Then 

      goes = tboxes 

    Else 

      hit = 4 

    End If 

  End If 

  If hit = 4 Then goes = 1 

  For myGo = 1 To goes 

    If hit = 1 Then 

      Set rngThis = ActiveDocument.Footnotes(myGo).Range 

      checkIt = "Footnotes: " 

      myJump = 1 

      rngThis.Start = rngThis.Start 

      rngThis.Cut 

      Set rng = scrapPad.Range 

      rng.Paste 

      Set rng = scrapPad.Range 

   End If 

    If hit = 2 Then 

      Set rng = ActiveDocument.Endnotes(myGo).Range 

      checkIt = "Endnotes (can be a bit slow): " 

      myJump = 10 

    End If 

    If hit = 3 Then 

      Do 

        someText = ActiveDocument.Shapes(myGo).TextFrame.HasText 

        If someText Then 

          Set rng = ActiveDocument.Shapes(myGo).TextFrame.TextRange 

          checkIt = "Text boxes: " 

          myJump = 10 

        Else 

          myGo = myGo + 1 

        End If 

      Loop Until someText Or myGo > goes 

    End If 

    If myGo > goes Then Exit For 

    If hit = 4 Then 

      Set rng = ActiveDocument.Range 

      checkIt = "Finally the main text: " 



      myJump = 100 

    End If 

 

    startChar = rng.Start 

    EndChar = rng.End 

    rng.HighlightColorIndex = wdNoHighlight 

    With rng.Find 

      .ClearFormatting 

      .Text = "" 

      .Font.Name = "Symbol" 

      .Execute 

    End With 

    If rng.Find.Found Then anySymbol = True 

 

' The colours used for the different attributes are 

' set below and can be changed to taste. 

 

    For chars = startChar + 1 To EndChar 

      rng.Start = chars - 1 

      rng.End = chars 

      myText = rng 

      If myText = "" Then myText = " " 

      If Asc(myText) > 128 And InStr(myExceptions, myText) = 0 Then 

        rng.HighlightColorIndex = wdYellow 

      End If 

      If rng.Font.Name = "Symbol" Then 

        rng.HighlightColorIndex = wdBrightGreen 

        anySymbol = True 

      End If 

      If rng.Font.Superscript Then 

        rng.HighlightColorIndex = wdPink 

        anySuper = True 

      End If 

      If rng.Font.Subscript Then 

        rng.HighlightColorIndex = wdPink 

        anySub = True 

      End If 

      If rng.Font.Bold = True Then 

        rng.HighlightColorIndex = wdTurquoise 

        anyBold = True 

      End If 

      If rng.Font.Italic = True Then 

        rng.HighlightColorIndex = wdTurquoise 

        anyItalic = True 

      End If 

      If rng.Font.Underline = True Then 

        rng.HighlightColorIndex = wdRed 

        anyUline = True 

      End If 

'rng.Select 

'dksdhl = rng.Start 

'zkl = rng.End 

' Here we see if any character has a style attached to it. 

' If it's not a paragraph style, it must be a character style. 

 

      If rng.Font.Color > 0 Then anyColour = True 

      thisStyle = rng.Style 



      If InStr(allStyles, thisStyle) = 0 And _ 

           InStr(charStyles, thisStyle) = 0 Then _ 

          charStyles = charStyles & thisStyle & vbCrLf 

      charLeft = EndChar - chars 

 

' Let the user know how things are progressing 

      If charLeft Mod myJump = 0 Then 

        If hit < 4 Then 

          StatusBar = "Press Ctrl-Break to stop.      " _ 

               & checkIt & goes - myGo + 1 & " — " & charLeft 

        Else 

          StatusBar = "Press <trl-Break to stop.      " _ 

               & "Finally the main text: " & " — " & charLeft 

        End If 

      End If 

    Next chars 

    If hit = 1 Then 

      rng.Start = 0 

      rng.Cut 

      rngThis.Paste 

    End If 

  Next myGo 

Next hit 

 

StatusBar = "" 

 

 

' Sort the style names into alphabetical order 

' and display the results. 

 

Selection.HomeKey Unit:=wdStory 

If someStyles = True Then 

  Set rng = ActiveDocument.Range 

  Selection.TypeText Text:=allStyles & vbCrLf 

  rng.End = Selection.End 

  rng.ConvertToTable 

  rng.Sort CaseSensitive:=False 

  rng.Rows.ConvertToText 

Else 

  Selection.TypeText Text:="aazz No styles used!" & vbCrLf 

End If 

 

 

If Len(charStyles) > 8 Then 

  rng.Start = Selection.Start 

  typeIt = "aazz Character styles used:" & vbCrLf 

  Selection.TypeText typeIt 

  charStyles = Right(charStyles, Len(charStyles) - 6) 

  Selection.TypeText charStyles & vbCrLf 

  rng.End = Selection.End 

  rng.ConvertToTable 

  rng.Sort CaseSensitive:=False 

  rng.Rows.ConvertToText 

End If 

 

' If no attributes at all are found, say so ... 

anyAtAll = anyBold Or anyItalic Or anySymbol Or _ 



     anyColour Or anyUline 

If anyAtAll = False Then 

  typeIt = "aazz No font attributes used!" & vbCrLf 

  Selection.TypeText typeIt 

 

' ... otherwise list the attributes encountered 

Else 

  typeIt = vbCrLf & "aazz Font attributes used:" & vbCrLf 

  Selection.TypeText typeIt 

  If anyBold Then Selection.TypeText ("Bold" & vbCrLf) 

  If anyItalic Then Selection.TypeText ("Italic" & vbCrLf) 

  If anyUline Then Selection.TypeText ("Underline" & vbCrLf) 

  If anySymbol Then Selection.TypeText ("Symbol font" & vbCrLf) 

  If anyColour Then Selection.TypeText ("Coloured text" & vbCrLf) 

End If 

Selection.TypeText vbCrLf & vbCrLf 

 

Selection.TypeText DocStats & vbCrLf & vbCrLf 

 

Selection.HomeKey Unit:=wdStory 

' Remove a stray carriage return 

' (to do with the sorting of styles) 

' Selection.Delete 

 

Set rng = ActiveDocument.Range 

 

' Add a heading style to the results section 

With rng.Find 

  .ClearFormatting 

  .Replacement.ClearFormatting 

  .MatchWildcards = True 

  .Text = "aazz (*)^13" 

  .Replacement.Text = "\1^p" 

  .Replacement.Style = "Heading 2" 

  .Execute Replace:=wdReplaceAll 

End With 

 

scrapPad.Close SaveChanges:=False 

 

If doFRedit = False Then GoTo lastBit 

 

' Open the FRedit list 

Documents.Open listFile 

Set theList = ActiveDocument 

 

If tboxes > 0 Then Selection.TypeText Text:="| textboxes = yes" & vbCrLf 

If fNotes > 0 Then Selection.TypeText Text:="| footnotes = yes" & vbCrLf 

If eNotes > 0 Then Selection.TypeText Text:="| endnotes = yes" & vbCrLf 

 

secondDoc.Activate 

Selection.HomeKey Unit:=wdStory 

 

' Run FRedit and close the Fredit list 

Call FRedit 

theList.Close SaveChanges:=False 

 

lastBit: 



' End with document one on screen 

firstDoc.Activate 

Selection.HomeKey Unit:=wdStory 

End Sub 

 

##################################################### 

 

First version 

 

Sub HighlightLister() 

' Version 26.05.11 

' List all the highlight colours used 

 

 

 

allHighs = "" 

mixCol = 9999999 

Set rng = ActiveDocument.Range 

theEnd = rng.End 

' Set rng2 = ActiveDocument.Range 

With rng.Find 

  .ClearFormatting 

  .Replacement.ClearFormatting 

  .Highlight = True 

  .Text = "" 

  .Replacement.Text = "" 

  .MatchWildcards = False 

End With 

 

wasCol = 0 

 

 

Do 

  rng.Find.Execute 

  If rng.Find.Found = True Then 

    stopNow = False 

    thisCol = rng.HighlightColorIndex 

    If thisCol < mixCol Then 

 '     rng.Select 

      Select Case thisCol 

        Case 0: 'Do nowt 

        Case wdYellow: col = "Yellow" 

        Case wdBrightGreen: col = "BrightGreen" 

        Case wdGreen: col = " Green" 

        Case wdPink: col = "Pink" 

        Case wdRed: col = "Red" 

        Case wdBlue: col = "Blue" 

        Case wdGray25: col = "Gray25" 

        Case wdGray50: col = "Gray50" 

        Case wdTurquoise: col = "Turquoise" 

        Case wdTeal: col = "Teal" 

        Case wdDarkBlue: col = "DarkBlue" 

        Case wdDarkYellow: col = "DarkYellow" 

        Case wdDarkRed: col = "DarkRed" 

        Case wdViolet: col = "Violet" 

      Case Else 

        ch.Select 



        col = "A colour not on the list!" 

      End Select 

      If InStr(allHighs, col) = 0 Then allHighs = allHighs & col & "," 

      wasCol = thisCol 

 

    Else 

      For Each wd In rng.Words 

'             wd.Select 

        thisCol = wd.HighlightColorIndex 

        If thisCol < mixCol Then 

          Select Case thisCol 

            Case 0: 'Do nowt 

            Case wdYellow: col = "Yellow" 

            Case wdBrightGreen: col = "BrightGreen" 

            Case wdGreen: col = " Green" 

            Case wdPink: col = "Pink" 

            Case wdRed: col = "Red" 

            Case wdBlue: col = "Blue" 

            Case wdGray25: col = "Gray25" 

            Case wdGray50: col = "Gray50" 

            Case wdTurquoise: col = "Turquoise" 

            Case wdTeal: col = "Teal" 

            Case wdDarkBlue: col = "DarkBlue" 

            Case wdDarkYellow: col = "DarkYellow" 

            Case wdDarkRed: col = "DarkRed" 

            Case wdViolet: col = "Violet" 

          Case Else 

            ch.Select 

            col = "A colour not on the list!" 

          End Select 

          If InStr(allHighs, col) = 0 Then allHighs = allHighs & col & "," 

          wasCol = thisCol 

        Else 

          wasCol = 0 

          For Each ch In wd.Characters 

   '            ch.Select 

            thisCol = ch.HighlightColorIndex 

            If thisCol <> wasCol Then 

              Select Case thisCol 

                Case 0: 'Do nowt 

                Case wdYellow: col = "Yellow" 

                Case wdBrightGreen: col = "BrightGreen" 

                Case wdGreen: col = " Green" 

                Case wdPink: col = "Pink" 

                Case wdRed: col = "Red" 

                Case wdBlue: col = "Blue" 

                Case wdGray25: col = "Gray25" 

                Case wdGray50: col = "Gray50" 

                Case wdTurquoise: col = "Turquoise" 

                Case wdTeal: col = "Teal" 

                Case wdDarkBlue: col = "DarkBlue" 

                Case wdDarkYellow: col = "DarkYellow" 

                Case wdDarkRed: col = "DarkRed" 

                Case wdViolet: col = "Violet" 

              Case Else 

                ch.Select 

                col = "A colour not on the list!" 



              End Select 

              If InStr(allHighs, col) = 0 Then allHighs = allHighs & col & "," 

              wasCol = thisCol 

            End If 

          Next ch 

          wasCol = 0 

        End If 

      Next wd 

      wasCol = 0 

    End If 

'    StatusBar = "Characters to go: " & Str(theEnd - rng.End) 

  Else 

    stopNow = True 

  End If 

Loop Until stopNow = True 

 

 

 

Selection.HomeKey Unit:=wdStory 

Selection.TypeText Text:=Replace(allHighs, ",", vbCrLf) 

Selection.Start = 0 

Selection.Style = "Normal" 

Selection.Sort 

Selection.End = 0 

 

Exit Sub 

 

##################################################### 

 

Second version 

 

Sub HighlightLister() 

' Version 26.05.11 

' List all the highlight colours used 

Dim gotCol(99) As Boolean 

 

mixCol = 9999999 

Set rng = ActiveDocument.Range 

theEnd = rng.End 

With rng.Find 

  .ClearFormatting 

  .Replacement.ClearFormatting 

  .Highlight = True 

  .Text = "" 

  .Replacement.Text = "" 

  .MatchWildcards = False 

End With 

 

 

Do 

  rng.Find.Execute 

  If rng.Find.Found = True Then 

    stopNow = False 

    thisCol = rng.HighlightColorIndex 

    If thisCol < mixCol Then 

  '    rng.Select 

      gotCol(thisCol) = True 



    Else 

      For Each wd In rng.Words 

  '           wd.Select 

        thisCol = wd.HighlightColorIndex 

        If thisCol < mixCol Then 

          gotCol(thisCol) = True 

        Else 

          For Each ch In wd.Characters 

   '            ch.Select 

            thisCol = ch.HighlightColorIndex 

            gotCol(thisCol) = True 

          Next ch 

        End If 

      Next wd 

    End If 

'    StatusBar = "Characters to go: " & Str(theEnd - rng.End) 

  Else 

    stopNow = True 

  End If 

Loop Until stopNow = True 

 

Selection.HomeKey Unit:=wdStory 

For i = 1 To 16 

  If gotCol(i) = True Then Selection.TypeText Text:=Str(i) & vbCrLf 

Next i 

 

End Sub 

 

##################################################### 

Version 3 

 

Sub Test() 

' Sub HighlightLister() 

' Version 26.05.11 

' List all the highlight colours used 

Dim gotCol(99) As Boolean 

 

mixCol = 9999999 

Set rng = ActiveDocument.Range 

theEnd = rng.End 

With rng.Find 

  .ClearFormatting 

  .Replacement.ClearFormatting 

  .Highlight = True 

  .Text = "" 

  .Replacement.Text = "" 

  .MatchWildcards = False 

End With 

 

Dim gotCol(99) As Boolean 

 

Do 

  rng.Find.Execute 

  If rng.Find.Found = True Then 

    stopNow = False 

    thisCol = rng.HighlightColorIndex 

    If thisCol < mixCol Then 



'      rng.Select 

      gotCol(thisCol) = True 

    Else 

      For Each ch In rng.Characters 

        thisCol = ch.HighlightColorIndex 

        gotCol(thisCol) = True 

      Next ch 

 '              rng.Select 

    End If 

'    StatusBar = "Characters to go: " & Str(theEnd - rng.End) 

  Else 

    stopNow = True 

  End If 

Loop Until stopNow = True 

 

Selection.HomeKey Unit:=wdStory 

For i = 1 To 16 

  If gotCol(i) = True Then Selection.TypeText Text:=Str(i) & vbCrLf 

Next i 

 

Exit Sub 

Selection.TypeText Text:=Replace(allHighs, ",", vbCrLf) 

Selection.Start = 0 

Selection.Style = "Normal" 

Selection.Sort 

Selection.End = 0 

 

 

 

Exit Sub 

 

 

 

 

 

' Keeeeeepppp ttthhhiisss 

Selection.HomeKey Unit:=wdStory 

 

Selection.Paragraphs(1).Range.Select 

 

Selection.Sentences(1).Select 

 

Selection.Words(1).Select 

endChars = Right(Selection, 2) 

If Asc(endChars) = 148 Or Asc(endChars) = 146 Then 

  Selection.MoveEnd , -2 

End If 

 

' Keeeeeepppp ttthhhiisss 

' Find the para numbers of first and last number 

i = 0 

totParas = ActiveDocument.Paragraphs.Count 

For Each para In ActiveDocument.Paragraphs 

  i = i + 1 

  If para.Range.Start = startHere Then firstPara = i 

  If para.Range.Start = startHere Then lastPara = i: Exit For 

Next para 



' ActiveDocument.Paragraphs(firstPara).Range.Select 

 

 

End Sub 

 

 

##################################################### 

Sub MultiChoiceRandomize() 

' Version 25.05.11 

' Randomize four-choice questions and answers 

myColor = wdTurquoise 

 

oldColour = Options.DefaultHighlightColorIndex 

Options.DefaultHighlightColorIndex = myColor 

myResponse = MsgBox("Cursor in question file?", vbQuestion + vbYesNo) 

If myResponse = vbNo Then Exit Sub 

qMax = InputBox("How many questions?", "MultiChoice Randomize", "") 

If qMax = 0 Then Exit Sub 

 

 

Selection.HomeKey Unit:=wdStory 

Set qnFile = ActiveDocument 

For Each doc In Documents 

  If Left(doc.Name, 6) <> "Normal" And doc.Name <> ActiveDocument.Name Then 

    Set ansFile = doc 

    Exit For 

  End If 

Next doc 

 

ansFile.Activate 

Selection.HomeKey Unit:=wdStory 

 

Randomize 

For i = 1 To qMax 

' Choose random number 

  rNum = ((Rnd * 4) Mod 4) 

 

  If rNum > 0 Then 

    qnFile.Activate 

  ' Find the question 

    With Selection.Find 

     .ClearFormatting 

     .Replacement.ClearFormatting 

     .Text = "^p" & Trim(Str(i)) & ". " 

     .Replacement.Text = "" 

     .MatchWildcards = False 

     .Execute 

    End With 

    Selection.Start = Selection.End 

  ' Find the A answer 

    With Selection.Find 

     .ClearFormatting 

     .Replacement.ClearFormatting 

     .Text = "^pA. " 

     .Replacement.Text = "" 

     .MatchWildcards = False 

     .Execute 



    End With 

    startQn = Selection.Start + 1 

    Selection.Start = Selection.End 

    Selection.Paragraphs(1).Range.Select 

    Selection.Range.HighlightColorIndex = myColor 

    Selection.Cut 

  ' Move down rnd steps & paste it 

    Selection.MoveDown Unit:=wdParagraph, Count:=rNum 

    Selection.Paste 

 

    'Move back up to (new) first answer & re-letter the options 

    Selection.End = startQn + 1 

    Selection.Start = startQn 

    For j = 1 To rNum + 1 

      Selection.TypeText Text:=Chr(64 + j) 

      Selection.MoveDown Unit:=wdParagraph, Count:=1 

      Selection.End = Selection.Start + 1 

    Next j 

 

  ' Move to answer file & find question number 

    ansFile.Activate 

    With Selection.Find 

     .ClearFormatting 

     .Replacement.ClearFormatting 

     .Text = "^p" & Trim(Str(i)) & ". " 

     .Replacement.Text = "" 

     .MatchWildcards = False 

     .Execute 

    End With 

    Selection.Start = Selection.End 

 

    With Selection.Find 

     .ClearFormatting 

     .Replacement.ClearFormatting 

     .Text = "^pA. " 

     .Replacement.Text = "" 

     .MatchWildcards = False 

     .Execute 

    End With 

    startQn = Selection.Start + 1 

    Selection.Start = Selection.End 

 

    With Selection.Find 

     .ClearFormatting 

     .Replacement.ClearFormatting 

     .Text = "^pB. " 

     .Replacement.Text = "" 

     .MatchWildcards = False 

     .Execute 

    End With 

    Selection.End = Selection.Start + 1 

    Selection.Start = startQn 

  ' Cut the A answer 

    Selection.Range.HighlightColorIndex = myColor 

    Selection.Cut 

 

  ' Select where to put it 



    Select Case rNum 

      Case 1: myText = "^pC. " 

      Case 2: myText = "^pD. " 

      Case 3: myText = "^pContent" 

    End Select 

 

    With Selection.Find 

     .ClearFormatting 

     .Replacement.ClearFormatting 

     .Text = myText 

     .Replacement.Text = "" 

     .MatchWildcards = False 

     .Execute 

    End With 

    Selection.End = Selection.Start + 1 

    Selection.Start = Selection.End 

    Selection.Paste 

 

    'Move back up to first answer and re-letter them 

    Selection.End = startQn - 1 

    Selection.Start = startQn - 1 

    For j = 1 To rNum + 1 

      With Selection.Find 

       .ClearFormatting 

       .Replacement.ClearFormatting 

       .Text = "^13[ABCD]. " 

       .Replacement.Text = "" 

       .MatchWildcards = True 

       .Execute 

      End With 

      Selection.Start = Selection.Start + 1 

      Selection.End = Selection.Start + 1 

      Selection.TypeText Text:=Chr(64 + j) 

    Next j 

  End If 

Next i 

Selection.HomeKey Unit:=wdStory 

qnFile.Activate 

Selection.HomeKey Unit:=wdStory 

Options.DefaultHighlightColorIndex = oldColour 

End Sub 

 

##################################################### 

Random numbers 

Dim tots(4) 

For i = 1 To 13000 

a = Rnd 

b = ((Rnd * 4) Mod 4) 

tots(b) = tots(b) + 1 

 

Next i 

a = tots(0) 

b = tots(1) 

c = tots(2) 

d = tots(3) 

ie = tots(4) 

bnc = 0 



Exit Sub 

 

##################################################### 

 

Jane Ward's macro: superscript <> square brackets 

 

Sub BIBbracket() 

' Version 21.05.11 

' Add brackets and de-superscript 

For Each wd In ActiveDocument.Words 

 thisWD = wd 

 BIBhere = InStr(thisWD, "BIB") 

 If BIBhere > 0 Then 

   wd.Select 

   Selection.Start = Selection.Start + BIBhere 

   BIBstart = Selection.Start 

   If Selection.Font.Superscript = True Then 

   ' We've found a superscript BIB without [] 

     Do 

       Selection.MoveStart wdCharacter, -1 

       Num = Asc(Selection) 

     Loop Until Num < 48 Or Num > 57 

     Selection.MoveStart wdCharacter, 1 

     startHere = Selection.Start 

     Selection.InsertBefore Text:="[" 

     Selection.MoveRight Unit:=wdWord, Count:=3 

     thisChar = Selection 

     Selection.MoveStart wdCharacter, 1 

     Selection.TypeText Text:="]" 

     Selection.MoveLeft Unit:=wdWord, Count:=1 

     Selection.Delete 

     Selection.MoveRight Unit:=wdWord, Count:=1 

     Selection.TypeText Text:=thisChar 

     Selection.Start = startHere 

     Selection.Font.Superscript = False 

     Selection.Start = Selection.End 

     If Asc(Selection) = 150 Then 

       Selection.MoveEnd wdCharacter, 1 

       Selection.Font.Superscript = False 

     End If 

   Else 

   ' We've found a superscript BIB WITH [] 

     Selection.Start = Selection.End 

     Do 

       Selection.MoveRight Unit:=wdCharacter, Count:=1 

     Loop Until Asc(Selection) = Asc("]") 

     Selection.Start = BIBstart 

     Selection.Font.Superscript = False 

   End If 

 End If 

Next wd 

End Sub 

 

 

 

 

##################################################### 



' Find the para numbers of first and last number 

i = 0 

totParas = ActiveDocument.Paragraphs.Count 

For Each para In ActiveDocument.Paragraphs 

  i = i + 1 

  If para.Range.Start = startHere Then firstPara = i 

  If para.Range.Start = startHere Then lastPara = i: Exit For 

Next para 

' ActiveDocument.Paragraphs(firstPara).Range.Select 

 

##################################################### 

 

Fiddling with URLs 

 

Selection.HomeKey Unit:=wdStory 

gotOne = False 

Do 

  With Selection.Find 

   .ClearFormatting 

   .Replacement.ClearFormatting 

   .Text = "[hw][tw][tw][p.]" 

   .Wrap = False 

   .Replacement.Text = "" 

   .MatchWildcards = True 

   .Execute 

  End With 

  gotOne = Selection.Find.Found 

 

  If gotOne = True And Selection.Font.Color <> wdColorBlue Then 

    urlStart = Selection.Start 

  ' Find the end of the URL 

    Selection.Start = Selection.End 

    With Selection.Find 

     .ClearFormatting 

     .Replacement.ClearFormatting 

     .Text = "[^13^32,^2]" 

     .Wrap = False 

     .Replacement.Text = "" 

     .Forward = True 

     .MatchWildcards = True 

     .Execute 

    End With 

    Selection.Start = urlStart 

    Selection.End = Selection.End - 1 

    myText = Selection 

    ActiveDocument.Hyperlinks.Add Anchor:=Selection.Range, _ 

         Address:=myText, TextToDisplay:=myText 

    Selection.End = Selection.End + 2 

    Selection.Start = Selection.End 

  End If 

Loop Until gotOne = False 

 

 

##################################################### 

Date: Tue, 05 Apr 2011 11:49:42 +1200 

Subject: Re: New challenge - try this macro... 

To: Paul Beverley <paul@archivepub.co.uk> 



 

Hi Paul 

 

Thanks again for your assistance. 

 

By adapting your two recent macros I've now worked out a combination one 

that deals with the several issues I wanted to correct: first, delete 

hyperlinks from any non-URL / non-email addresses, such as author names; 

second, fix up existing hyperlinks by deleting http from the text of 

'http+www' URLs (publisher's style) and adding http to the address of URLs 

where it was missing (I sometimes find that the hyperlink address defines an 

absolute path to a document on the author's hard drive rather to the actual 

URL); third add hyperlinks to URLs that don't have them - in the same style 

as the preceding. 

 

FYI I have attached my final FixURLs macro, together with the list of random 

URLs that I used to test it out. 

 

By following your macros I think I should be able to adapt this one to 

handle endnotes, but will sing out if I get stuck. 

 

Happy 'concreting' 

 

Thiers 

 

Sub FixURLs() 

 

'Delete and highlight hyperlinks that are not URLs or email addresses 

myColour = 0 

myColour = wdGray25 

linksTotal = ActiveDocument.Hyperlinks.Count 

If linksTotal > 0 Then 

  For i = linksTotal To 1 Step -1 

    myText = ActiveDocument.Hyperlinks(i).TextToDisplay 

    If InStr(myText, "www") = 0 And InStr(myText, "http") = 0 _ 

         And InStr(myAddress, "mailto") = 0 Then 

      Set rng = ActiveDocument.Hyperlinks(i).Range 

      If myColour > 0 Then rng.HighlightColorIndex = myColour 

      ActiveDocument.Hyperlinks(i).Delete 

    End If 

  Next i 

End If 

 

 

'Fix existing hyperlinked URLs 

linksTotal = ActiveDocument.Hyperlinks.Count 

If linksTotal > 0 Then 

  For i = linksTotal To 1 Step -1 

    myText = ActiveDocument.Hyperlinks(i).TextToDisplay 

    'delete http from http://www TextToDisplay 

    If InStr(myText, "www") > 0 And InStr(myText, "http") > 0 Then 

        ActiveDocument.Hyperlinks(i).TextToDisplay = Mid$(myText, 8, Len(myText)) 

    Else 

    'add http to www Address if not present 

    If InStr(myText, "www") > 0 And InStr(myText, "http") = 0 Then 

        ActiveDocument.Hyperlinks(i).Address = "http://" & myText 

    End If 



    End If 

  Next i 

End If 

 

 

'Hyperlink any unlinked URLs 

Selection.HomeKey Unit:=wdStory 

gotOne = False 

Do 

  With Selection.Find 

   .ClearFormatting 

   .Replacement.ClearFormatting 

   .Text = "[hw][tw][tw][p.]" 

   .Wrap = False 

   .Replacement.Text = "" 

   .MatchWildcards = True 

   .Execute 

  End With 

  gotOne = Selection.Find.Found 

 

  If gotOne = True And Selection.Font.Color <> wdColorBlue Then 

    urlStart = Selection.Start 

  ' Find the end of the URL 

    Selection.Start = Selection.End 

    With Selection.Find 

     .ClearFormatting 

     .Replacement.ClearFormatting 

     .Text = "[^13^32,^2]" 

     .Wrap = False 

     .Replacement.Text = "" 

     .Forward = True 

     .MatchWildcards = True 

     .Execute 

    End With 

    Selection.Start = urlStart 

    Selection.End = Selection.End - 1 

    myText = Selection 

        'link http://www URLs 

        If InStr(myText, "http") > 0 And InStr(myText, "www") > 0 Then 

            strText = Mid$(myText, 8, Len(myText)) 

            ActiveDocument.Hyperlinks.Add Anchor:=Selection.Range, _ 

                Address:=myText, TextToDisplay:=strText 

        Else 

        'link www URLs 

        If InStr(myText, "http") = 0 And InStr(myText, "www") > 0 Then 

            strAddress = "http://" & myText 

            ActiveDocument.Hyperlinks.Add Anchor:=Selection.Range, _ 

                Address:=strAddress, TextToDisplay:=myText 

        Else 

        'link http:// URLs 

            ActiveDocument.Hyperlinks.Add Anchor:=Selection.Range, _ 

                Address:=myText, TextToDisplay:=myText 

        End If 

        End If 

 

    Selection.End = Selection.End + 2 

    Selection.Start = Selection.End 



  End If 

Loop Until gotOne = False 

 

End Sub 

 

Test URLS 

 

W = www URL 

H = http URL 

HW = http://www URL 

- = without hyperlink  + = with hyperlink 

 

W-  www.ihi.org 

 

W-  www.number10.gov.uk/news/latest-news/2010/05/big-society-50248 

 

W+  www.ihi.org .  (This one retains the absolute address path rather than the true URL   address) 

 

W+  www.library.nhs.uk/Improvement/ViewResource.aspx?resID=325326 

 

H-  http://24.125.155.132/scholar?q=cache 

 

H+  http://scholar?q=cache:MS45tOwCYzMJ 

 

HW+  http://www.scholar?q=cache:MS45tOwCYzMJ 

 

HW+  http://www.thersa.org 

 

HW-  http://www.ihi.org . 

 

HW-  http://www.number10.gov.uk/news/latest-news/2010/05/big-society-50248 

 

HW-  http://www.scholar?q=cache:MS45tOwCYzMJ:scholar.google.com/ 

 

 

 

 

##################################################### 

 

 

 

On Error Resume Next 

 

' If the file is already opened by another process, 

' and the specified type of access is not allowed, 

' the Open operation fails and an error occurs. 

Open strFileName For Binary Access Read Lock Read As #1 

Close #1 

 

' If an error occurs, the document is currently open. 

If Err.Number <> 0 Then 

    FileLocked = True 

    Err.Clear 

End If 

 

 

 



##################################################### 

 

Sub TrudeauFandR() 

' Version 18.02.11 

' Find something specific and do things to each one 

Selection.HomeKey Unit:=wdStory 

Do 

  With Selection.Find 

    .ClearFormatting 

    .Replacement.ClearFormatting 

    .Text = "([.\?\!])  ([A-Z])" 

    .Wrap = False 

    .Replacement.Text = "" 

    .Forward = True 

    .MatchWildcards = True 

    .Execute 

  End With 

 

  If Selection.Find.Found = True Then 

  ' Move the start of the selection one space right 

  ' i.e. just past the punctuation mark 

    Selection.Start = Selection.Start + 1 

  ' Put the end of the selection one space to the right of this 

  ' i.e. select the first space character 

    Selection.End = Selection.Start + 1 

  ' Delete it 

    Selection.Delete 

    stopNow = False 

  Else 

    stopNow = True 

  End If 

  Selection.Start = Selection.End 

Loop Until stopNow = True 

 

Selection.HomeKey Unit:=wdStory 

Do 

  With Selection.Find 

    .ClearFormatting 

    .Replacement.ClearFormatting 

    .Text = "([0-9])-([0-9])" 

    .Wrap = False 

    .Replacement.Text = "" 

    .Forward = True 

    .MatchWildcards = True 

    .Execute 

  End With 

 

  If Selection.Find.Found = True Then 

  ' Move the start of the selection one space right 

  ' i.e. past the first number and in front of the hyphen 

    Selection.Start = Selection.Start + 1 

  ' Put the end of the selection one place to the right of this 

  ' i.e. select the hyphen 

    Selection.End = Selection.Start + 1 

  ' Type a dash, which will replace the selected hyphen 

    Selection.TypeText Text:=Chr(150) 

    stopNow = False 



  Else 

    stopNow = True 

  End If 

  Selection.Start = Selection.End 

Loop Until stopNow = True 

End Sub 

 

##################################################### 

 

 

 

 

' Find the number of the paragraph 

' paraNumber = ActiveDocument.Range(0, Selection.Paragraphs(1).Range.End).Paragraphs.Count 

' Select the previous paragraph 

' ActiveDocument.Paragraphs(paraNumber - 1).Range.Select 

Sub OpenLastJob() 

' Version 

' Alt-Ctrl-f10 

 

On Error GoTo NoWorries 

If ActiveDocument.Name = RecentFiles(1) Then RecentFiles(2).Open 

NoWorries: 

RecentFiles(1).Open 

Application.GoBack 

 

 

End Sub 

 

##################################################### 

Sub DisplayQuote() 

' Version 13.10.10 

myTrack = ActiveDocument.TrackRevisions 

ActiveDocument.TrackRevisions = False 

Selection.HomeKey Unit:=wdLine 

Selection.TypeText Text:="<DQ>" 

Selection.MoveDown Unit:=wdParagraph, Count:=1 

Selection.MoveLeft Unit:=wdCharacter, Count:=1 

Selection.TypeText Text:="<\DQ>" 

 

Selection.MoveUp Unit:=wdParagraph, Count:=1 

Selection.MoveDown Unit:=wdParagraph, Count:=1, Extend:=wdExtend 

 

Selection.Range.Font.Italic = False 

 

 

With Selection.ParagraphFormat 

  .LeftIndent = CentimetersToPoints(0.95) 

  .SpaceBeforeAuto = False 

  .SpaceAfterAuto = False 

End With 

With Selection.ParagraphFormat 

  .RightIndent = CentimetersToPoints(1) 

  .SpaceBeforeAuto = False 

  .SpaceAfterAuto = False 

End With 

 



Exit Sub 

 

Selection.MoveUp Unit:=wdParagraph, Count:=1 

With Selection.Find 

  .ClearFormatting 

  .Replacement.ClearFormatting 

  .Text = "'" 

  .Forward = True 

  .MatchWildcards = False 

  .Execute 

End With 

ActiveDocument.TrackRevisions = myTrack 

 

End Sub 

 

##################################################### 

 

Sub PrefixAdder() 

' Version 05.02.11 

' Add prefix to all section numbers 

 

'docName = ActiveDocument.Name 

'i = InStr(docName, "Annex_") 

'If i > 0 Then 

'  thisPrefix = Mid(docName, i + 6, 1) 

'Else 

'  thisPrefix = "" 

'End If 

'Prefix = InputBox("Prefix?", "PrefixAdder", thisPrefix) 

'If Prefix = "" Then Exit Sub 

 

myFind = "9." 

myPrefix = "D1." 

 

myTrack = ActiveDocument.TrackRevisions 

ActiveDocument.TrackRevisions = False 

 

Set rng = ActiveDocument.Content 

With rng.Find 

  .ClearFormatting 

  .Replacement.ClearFormatting 

  .Text = "^m" 

  .Replacement.Text = "^m^p" 

  .Replacement.Highlight = False 

  .MatchWildcards = False 

  .Execute Replace:=wdReplaceAll 

End With 

 

For Each para In ActiveDocument.Paragraphs 

  myText = para 

  If Left(myText, Len(myFind)) = myFind Then 

    para.Range.InsertBefore myPrefix 

  End If 

Next para 

Set rng = ActiveDocument.Content 

With rng.Find 

  .ClearFormatting 



  .Replacement.ClearFormatting 

  .Text = "^m^p" 

  .Replacement.Text = "^m" 

  .Replacement.Highlight = False 

  .MatchWildcards = False 

  .Execute Replace:=wdReplaceAll 

End With 

Beep 

ActiveDocument.TrackRevisions = myTrack 

 

End Sub 

 

##################################################### 

Sub OpenLastJob() 

' Version 

'<shift-alt-ctrl-O> 

 

RecentFiles(1).Open 

Application.GoBack 

 

End Sub 

 

##################################################### 

Sub InstantFindFormat() 

 

' Version 10.09.10 

' Ctrl-Shift-Alt-# 

 

hereNow = Selection.Start 

isSuper = Selection.Font.Superscript 

thisBit = Trim(Selection) 

If Selection.End = Selection.Start Then 

  thisBit = "" 

  Selection.MoveEnd , 1 

End If 

isSuper = Selection.Font.Superscript 

isSub = Selection.Font.Subscript 

isItalic = Selection.Font.Italic 

isBold = Selection.Font.Bold 

Selection.MoveStart , 10 

Selection.End = Selection.Start 

With Selection.Find 

  .ClearFormatting 

  .Replacement.ClearFormatting 

  .Wrap = False 

  If isSuper Then .Font.Superscript = True 

  If isSub Then .Font.Subscript = True 

  If isItalic Then .Font.Italic = True 

  If isBold Then .Font.Bold = True 

  .Text = thisBit 

  .Replacement.Text = thisBit 

  .MatchWildcards = False 

  .MatchCase = False 

  .Forward = True 

  .Execute 

End With 

If Selection.End = hereNow Then Beep 



If Selection.Start = hereNow + 10 Then 

  Beep 

  Selection.Start = hereNow 

  Selection.End = hereNow 

End If 

 

' Leave F&R dialogue in a sensible state 

Selection.Find.Wrap = wdFindContinue 

 

End Sub 

 

Sub InstantFindFormatUp() 

 

' Version 10.09.10 

' Ctrl-Shift-Alt-] 

 

hereNow = Selection.Start 

thisBit = Trim(Selection) 

If Selection.End = Selection.Start Then 

  thisBit = "" 

  Selection.MoveEnd , 1 

End If 

isSuper = Selection.Font.Superscript 

isSub = Selection.Font.Subscript 

isItalic = Selection.Font.Italic 

isBold = Selection.Font.Bold 

Selection.MoveStart , -10 

Selection.End = Selection.Start 

With Selection.Find 

  .ClearFormatting 

  .Replacement.ClearFormatting 

  .Wrap = False 

  .Forward = False 

  If isSuper Then .Font.Superscript = True 

  If isSub Then .Font.Subscript = True 

  If isItalic Then .Font.Italic = True 

  If isBold Then .Font.Bold = True 

  .Text = thisBit 

  .Replacement.Text = thisBit 

  .MatchCase = False 

  .MatchWildcards = False 

  .Execute 

End With 

If Selection.Start = hereNow Then Beep 

If Selection.Start = hereNow - 10 Then 

  Beep 

  Selection.Start = hereNow 

  Selection.End = hereNow 

End If 

 

'Add these two to leave F&R dialogue in a sensible state 

Selection.Find.Forward = True 

Selection.Find.Wrap = wdFindContinue 

 

End Sub 

 

##################################################### 



Sub PreToRepFromTop() 

' Version 03.12.10 

' Shift-Alt-H 

myText = Selection 

If Asc(myText) <> 32 Then myText = Trim(myText) 

With Selection.Find 

  .ClearFormatting 

  .Replacement.ClearFormatting 

  .MatchWildcards = off 

End With 

 

Selection.HomeKey Unit:=wdStory 

 

With Dialogs(wdDialogEditReplace) 

  .Find = myText 

  .Replace = myText 

  .MatchCase = True 

  .Execute 

End With 

CommandBars("Menu Bar").Controls("&Edit").Controls("R&eplace...").Execute 

End Sub 

 

Sub PrepToRepTitle() 

' Version 

'<shift-alt-H> 

  myText$ = Trim(Selection) 

  With Selection.Find 

    .ClearFormatting 

    .Replacement.ClearFormatting 

    .MatchWildcards = off 

  End With 

 

  Selection.HomeKey Unit:=wdStory 

 

  On Error GoTo ReportIt 

 

  With Dialogs(wdDialogEditReplace) 

    .Find = myText$ 

    .Replace = Left(myText$, 1) + LCase(Right(myText$, Len(myText$) - 1)) 

    .MatchCase = True 

    .Show 

  End With 

 

FinishHere: 

Exit Sub 

 

ReportIt: 

  MsgBox Err.Description 

  Resume FinishHere 

End Sub 

 

##################################################### 

Sub LinesInACell() 

' Version 

Dim myCount As Long 

myCount = 1 

Do 



    Selection.MoveRight Unit:=wdCell, Count:=2 

    Selection.MoveLeft Unit:=wdCell 

    Selection.MoveLeft Unit:=wdCharacter 

    Selection.TypeText Text:="|" 

    myCount = myCount + 1 

Loop Until myCount = 10 

End Sub 

 

##################################################### 

 

Sub MacroDbase() 

' Version 18.01.11 

oldFind = Selection.Find.Text 

oldReplace = Selection.Find.Replacement.Text 

 

Selection.HomeKey Unit:=wdStory 

allText = "" 

With Selection.Find 

  .ClearFormatting 

  .Replacement.ClearFormatting 

  .MatchWildcards = False 

  .Text = "anaerobic 4" 

  .MatchCase = True 

  .Wrap = False 

  .Execute 

End With 

Selection.Start = Selection.End 

Do 

  With Selection.Find 

    .ClearFormatting 

    .Replacement.ClearFormatting 

    .MatchWildcards = False 

    .Text = "^pSub" 

    .Font.Name = "Courier New" 

    .MatchCase = True 

    .Wrap = False 

    .Execute 

  End With 

 

  If Selection.Find.Found = True Then 

    gotOne = True 

    Selection.MoveRight Unit:=wdWord, Count:=1 

    Selection.MoveRight Unit:=wdWord, Count:=1, Extend:=wdExtend 

    mName = Selection 

    Selection.MoveRight Unit:=wdWord, Count:=5 

    Selection.MoveRight Unit:=wdWord, Count:=1, Extend:=wdExtend 

    If Asc(Selection) > 47 And Asc(Selection) < 58 Then 

      Selection.MoveRight Unit:=wdWord, Count:=4, Extend:=wdExtend 

      mDate = Selection 

    Else 

      mDate = "" 

    End If 

    Selection.MoveEnd wdCharacter, 1 

    Selection.Start = Selection.End 

    Selection.EndKey Unit:=wdLine, Extend:=wdExtend 

    If Len(Selection) > 3 Then 

      Selection.Start = Selection.Start + 2 



      Selection.End = Selection.End - 1 

      mDescrip = Selection 

    Else 

      mDescrip = "Blah blah blah" 

    End If 

    Selection.Start = Selection.End 

    allText = allText & mName & Chr(9) & mDate & Chr(9) & mDescrip & vbCrLf 

    allText = allText & "zz" & mDate & "zz" & mName & Chr(9) & mDate & Chr(9) & mDescrip & vbCrLf 

  Else 

    gotOne = False 

  End If 

Loop Until gotOne = False 

 

Documents.Add 

Selection.TypeText Text:=allText 

Set rng = ActiveDocument.Content 

 

' Switch the date order 

With rng.Find 

  .ClearFormatting 

  .Replacement.ClearFormatting 

  .Text = "zz([0-9][0-9]).([0-9][0-9]).([0-9][0-9])zz" 

  .Replacement.Text = "zz\3.\2.\1zz" 

  .Forward = True 

  .Wrap = wdFindContinue 

  .Format = False 

  .MatchWildcards = True 

  .Execute Replace:=wdReplaceAll 

End With 

 

Selection.WholeStory 

Selection.Sort ExcludeHeader:=False, FieldNumber:="Column 1", _ 

    SortFieldType:=wdSortFieldAlphanumeric, SortOrder:=wdSortOrderAscending, _ 

    Separator:=wdSortSeparateByCommas, SortColumn:=False, caseSensitive:=True, _ 

    SubFieldNumber:="Paragraphs" 

 

Selection.HomeKey Unit:=wdStory 

' Find the first zzdatezz 

With Selection.Find 

  .ClearFormatting 

  .Replacement.ClearFormatting 

  .Text = "zz([0-9][0-9]).([0-9][0-9]).([0-9][0-9])zz" 

  .Replacement.Text = "" 

  .MatchWildcards = True 

  .Execute 

End With 

Selection.End = Selection.Start 

Selection.InsertBefore Text:="Sorted in date order" & vbCrLf 

Selection.Style = "Heading 2" 

 

Selection.HomeKey Unit:=wdStory 

Selection.TypeText Text:="Alphabetic order" 

Selection.MoveUp Unit:=wdLine, Count:=1, Extend:=wdExtend 

Selection.Style = "Heading 2" 

 

Set rng = ActiveDocument.Content 

 



' Remove the reverse dates 

With rng.Find 

  .ClearFormatting 

  .Replacement.ClearFormatting 

  .Text = "zz([0-9][0-9]).([0-9][0-9]).([0-9][0-9])zz" 

  .Replacement.Text = "" 

  .Forward = True 

  .Wrap = wdFindContinue 

  .Format = False 

  .MatchWildcards = True 

  .Execute Replace:=wdReplaceAll 

End With 

 

Selection.WholeStory 

Selection.ConvertToTable Separator:=wdSeparateByTabs 

Selection.Tables(1).Style = "Table Grid" 

Selection.Tables(1).AutoFitBehavior (wdAutoFitContent) 

With Selection.Find 

  .Text = oldFind 

  .Replacement.Text = oldReplace 

  .MatchWildcards = False 

End With 

Selection.HomeKey Unit:=wdStory 

ActiveDocument.SaveAs _ 

     FileName:="C:\Program Files\VirtualAcorn\VirtualRPC-

SA\HardDisc4\MyFiles2\WIP\zzzTheBook\MacroList.doc", _ 

     FileFormat:=wdFormatDocument 

End Sub 

 

##################################################### 

theEnd = ActiveDocument.Content.End 

revMax = ActiveDocument.Revisions.Count 

For i = 1 To revMax 

' For i = revMax To 1 Step -1 

  Set rng = ActiveDocument.Revisions.Item(i) 

  myType = ActiveDocument.Revisions.Item(i).FormatDescription 

  If myType = "Formatted: Not Highlight" Then 

    ActiveDocument.Revisions.Item(i).Accept 

  End If 

StatusBar = "Getting rid of 'Formatted: Not Highlight'..." _ 

       & Str(revMax - i) 

 rng.Select 

Next i 

 

' Selection.EndKey Unit:=wdStory 

' ActiveWindow.View.ShowRevisionsAndComments = nowShowMarks 

ActiveDocument.TrackRevisions = nowTrack 

Exit Sub 

 

theEnd = ActiveDocument.Content.End 

started = False 

For Each rev In ActiveDocument.Range.Revisions 

' revMax = ActiveDocument.Revisions.Count 

' For i = 1 To revMax 

' For i = revMax To 1 Step -1 

'  wasStart = rng.Start 

'  wasHere = rng.End 



'  Set rng = ActiveDocument.Revisions.Item(i) 

  Set rng = rev.Range 

' GoTo missIt 

'  nowHere = rng.End 

'  nowStart = rng.Start 

'  If nowHere <> wasHere Then 

'  myType = ActiveDocument.Revisions.Item(i).FormatDescription 

 myType = rev.FormatDescription 

  If myType = "Formatted: Not Highlight" Then rng.Revisions.AcceptAll 

'  If myType = "Formatted: Not Highlight" Then 

'ActiveDocument.Revisions.Item(i).Accept 

'  End If 

'missIt: 

  StatusBar = "Getting rid of 'Formatted: Not Highlight'..." _ 

       & Str(theEnd - rng.End) 

'StatusBar = "Getting rid of 'Formatted: Not Highlight'..." _ 

       & Str(revMax - i) 

' rng.Select 

Next rev 

 

 

 

##################################################### 

 

List commands 

 

1. On the Tools menu, point to Macro, and then click Macros. 

2. In the Macros in box, click Word commands. 

3. In the Macro name box, click ListCommands. 

4. Click Run. 

5. In the List Commands dialog box, click Current menu and keyboard settings. 

 

 

##################################################### 

Exit Sub 

Selection.Range.PasteSpecial DataType:=wdPasteText 

 

 

On Error GoTo NotText 

Set MyData = New DataObject 

MyData.GetFromClipboard 

strClip = MyData.GetText 

Selection.TypeText Text:=strClip 

 

NotText: 

If Err <> 0 Then 

  MsgBox "Data on clipboard is not text." 

End If 

Exit Sub 

 

 

  Selection.PasteAndFormat (wdFormatSurroundingFormattingWithEmphasis) 

  Selection.PasteAndFormat (wdFormatPlainText) 

  Selection.PasteAndFormat (wdPasteDefault) 

 

Selection.PasteAndFormatSelection.PasteAndFormat (wdPasteUnformatted) 

 



 

##################################################### 

  ActiveWindow.ActivePane.SmallScroll Down:=2 

 

##################################################### 

' Select current word 

Selection.Words(1).Select 

 

' Select current paragraph 

Selection.Paragraphs(1).Range.Select 

 

' Find the number of the paragraph 

MsgBox ActiveDocument.Range(0, Selection.Paragraphs(1).Range.End).Paragraphs.Count 

 

 

Sub FindParaAndWordNumber () 

' Version 09.11.10 

' This finds the number of the current paragraph 

' and the current word 

 

Set rng = ActiveDocument.Range 

rng.End = Selection.Start 

myPara = rng.Paragraphs.Count 

ActiveDocument.Paragraphs(myPara).Range.HighlightColorIndex = wdYellow 

myWord = rng.Words.Count 

ActiveDocument.Words(myWord).HighlightColorIndex = wdRed 

Exit Sub 

 

 

##################################################### 

' Sub RenumberSuperscript() 

' Version 18.12.10 

 

Selection.HomeKey Unit:=wdStory 

i = 1 

Do 

  With Selection.Find 

    .ClearFormatting 

    .Replacement.ClearFormatting 

    .MatchWildcards = False 

    .Text = "" 

    .Font.Superscript = True 

    .Replacement.Text = "" 

    .Wrap = False 

    .Execute 

  End With 

 

  KeepGoing = Selection.Find.Found 

  OKchars = "0123456789" & Chr(21) 

  ' Chr(21) is because sometimes a rogue end field 

  ' gets left behind with the footnote marker 

  goodOne = False 

  foundText = Selection 

  For char = 1 To Len(foundText) 

    If InStr(OKchars, Mid(foundText, char, 1)) > 0 Then goodOne = True 

  Next char 

  If KeepGoing = True And goodOne = True Then 



    Selection.TypeText Text:=Trim(Str(i)) 

    i = i + 1 

  End If 

Loop Until KeepGoing = False 

Exit Sub 

 

##################################################### 

Sub UnRaiser() 

' Version 15.12.10 

Selection.WholeStory 

Selection.Font.Position = 0 

End Sub 

 

 

 

Sub mandy() 

Selection.HomeKey Unit:=wdStory 

Do 

  With Selection.Find 

    .ClearFormatting 

    .Replacement.ClearFormatting 

    .MatchWildcards = False 

    .Font.Superscript = True 

    .Text = "" 

    .Wrap = False 

    .Execute 

  End With 

  gotOne = Selection.Find.Found 

  hereNow = Selection.Start 

  hereEnd = Selection.End 

  actual = Selection 

  Selection.MoveStart wdCharacter, -2 

  Selection.MoveEnd wdCharacter, 2 

  If gotOne = True Then 

    thisText = Selection 

    For i = 1 To Len(thisText) 

    MsgBox (Asc(Mid(thisText, i, 1))) 

 

    Selection.Delete 

    Selection.TypeText Text:=actual 

    Selection.Start = hereNow 

    Selection.Font.Superscript = True 

  End If 

Loop Until gotOne = False 

 

End Sub 

 

 

##################################################### 

Sub SpellChWordAny() 

' Version 06.12.10 

Selection.MoveEnd wdWord, 1 

Selection.MoveStart wdWord, -1 

If CheckSpelling(Selection, _ 

     MainDictionary:=Languages(Selection.LanguageID).NameLocal) = False Then 

  ActiveDocument.CheckSpelling 

Else 



  Selection.End = Selection.Start 

  beep 

End If 

End Sub 

 

 

##################################################### 

' Version 12.11.10 

myWds = ",that|which,which|that,last|past,past|final,final,previous,previous|last," 

myWds = myWds & "like|such as,Like|As with,than|from," 

myWds = myWds & "England|the UK,Holland|the Netherlands," 

myWds = myWds & "Continuously|Continually,Continually|Continuously,Due|Owing," 

myWds = myWds & "Continuous|Continual,Continual|Continuous," 

myWds = myWds & "continuously|continually,continually|continuously,due|owing," 

myWds = myWds & "continuous|continual,continual|continuous,however|but," 

myWds = myWds & "as|because,an|one,a|one,An|One,A|One,is|are,are|is,to|from," 

myWds = myWds & "°| degrees,may|might,might|may,ad hoc|occasional,so|therefore," 

myWds = myWds & "&|and,instantly|instantaneously,for|because," 

myWds = myWds & "Added|Improved," 

myWds = myWds & "degree|!°,degrees|!°,percent|!%,per cent|!%," 

' Use 'per cent' or 'percent' for UK/US spelling 

If Selection.LanguageID = wdEnglishUK Then 

  myWds = myWds & "%| per cent," 

Else 

  myWds = myWds & "%| percent," 

End If 

 

Selection.End = Selection.Start 

If Asc(Selection) = 32 Then 

  Selection.MoveStart wdCharacter, 2 

  Exit Sub 

End If 

Selection.MoveLeft Unit:=wdWord, Count:=1 

Selection.MoveRight Unit:=wdWord, Count:=1, Extend:=wdExtend 

If Right(Selection, 1) = " " Then Selection.MoveEnd , -1 

' check if this "word" includes a close single curly quote 

If Right(Selection, 1) = Chr(146) Then Selection.MoveEnd , -1 

thisWd = Selection 

 

' Look through the list of words 

WordPos = InStr(myWds, thisWd & "|") 

If WordPos > 0 Then 

  myWds = Right(myWds, Len(myWds) - WordPos - Len(thisWd)) 

  newWd = Left(myWds, InStr(myWds, ",") - 1) 

  ' If it starts with "!", delete it and delete 

  ' the previous character in the text 

  If Asc(newWd) = 33 Then 

    newWd = Right(newWd, Len(newWd) - 1) 

    Selection.Start = Selection.Start - 1 

  End If 

  Selection.TypeText Text:=newWd 

  Selection.MoveLeft Unit:=wdCharacter, Count:=1 

Else 

' If no word found, assume that an added 'that' is needed 

  Selection.Start = Selection.End 

  nextChar = Selection 

  If nextChar = "," Then Selection.MoveRight Unit:=wdCharacter, Count:=1 



  Selection.TypeText Text:=" that" 

End If 

 

##################################################### 

 

Sub ZtoS() 

' Version 24.07.10 

' Ctrl-Alt-Shift-z 

 

oldFind = Selection.Find.Text 

oldReplace = Selection.Find.Replacement.Text 

 

Selection.End = Selection.Start 

With Selection.Find 

  .ClearFormatting 

  .Replacement.ClearFormatting 

  .Text = "iz" 

  .MatchWildcards = False 

  .Execute 

End With 

 

Selection.MoveStart , 1 

 

If Selection = "z" Then 

  Selection.TypeText Text:="s" 

Else 

  Selection.TypeText Text:="S" 

End If 

 

With Selection.Find 

  .Text = oldFind 

  .Replacement.Text = oldReplace 

End With 

 

End Sub 

 

##################################################### 

To: "Paul Beverley" <paul@archivepub.co.uk> 

Subject: "Copy Text into the F&R Box" / PrepareToReplace() macro 

Date: Thu, 25 Nov 2010 15:40:51 -0500 

 

Hi, Paul. 

 

I tried using your free macro PrepareToReplace() , but it doesn't 

seem to work right. Suppose I keep pressing the "Find" button. It 

keeps cycling through the document again and again, and only 

after the dialog box is manually closed does the message that no 

more instances can be found pop up. 

 

I was looking for something else in a collection of macros from 

WordTips , and I happened to come upon the technique of launching 

a dialog box as a commandbar button rather than as a dialog. I 

was then able to make the Find box behave properly. 

 

My code is shown below. It's a bit more involved than your macro 

and is designed to be a replacement for the built-in Ctrl+H 

keystroke and to offer choices based on whether there is a valid selection, 



 

but you can see the technique and borrow from it appropriately to fit with yours. 

 

A couple of lines are commented out because I decided not to be bothered with setting the "Match Case" option. 

 

Regards, 

Shmuel 

 

Sub ReplaceSelected() 

'Show Find/Replace dialog pre-filled with the current selection 

'Designed as replacement for Ctrl+H keystroke 

'(c) Shmuel Gerber, November 2010 

Dim reason As String, myText As String, msg As String, title As String 

Dim myChoice As VbMsgBoxResult 

    If Selection.Start = Selection.End Then GoTo Built_In       'nothing selected, skip rest of macro 

    reason = ""                             'reason for not using selected text 

    If Selection.Type <> wdSelectionNormal Then reason = "Not a 'normal' selection." 

    If Selection.Range.ComputeStatistics(wdStatisticParagraphs) > 0 _ 

        Then reason = "Selection includes paragraph break." 

    If Selection.End - Selection.Start > 255 Then reason = "Selected text is too long to find." 

    If reason <> "" Then 

        title = "Find/Replace cannot use selected text" 

        msg = reason & " Find/Replace within selection?" 

        Select Case MsgBox(msg, vbOKCancel + vbQuestion, title) 

            Case vbOK: GoTo Built_In 

            Case vbCancel: Exit Sub 

        End Select 

    End If 

    'If none of the above: 

    myText = Selection 

    title = "Find/Replace selected text?" 

    msg = _ 

        "Yes = Start Find/Replace using selected text:" & vbNewLine & "«" & myText & "»" & vbNewLine & 

vbNewLine & _ 

        "No  = Find/Replace within selection" & vbNewLine & vbNewLine & _ 

        "Cancel = Continue editing" 

    Select Case MsgBox(msg, vbYesNoCancel + vbQuestion, title) 

        Case vbNo: GoTo Built_In 

        Case vbCancel: Exit Sub 

    End Select 

    'Last choice was "Yes": 

'    myChoice = MsgBox("Match Case?", vbYesNoCancel, "Find/Replace option") 

'    If myChoice = vbCancel Then Exit Sub 

    'based on Macros4Editors PrepareToReplace() by Paul Beverley: 

    Selection.End = Selection.Start     'unselect and search from start of selection 

    With Dialogs(wdDialogEditReplace)   'fill in the dialog box fields 

        .Find = myText 

        .Replace = myText 

'        If myChoice = vbYes Then .MatchCase = True 

'        If myChoice = vbNo Then .MatchCase = False 

        .Execute 

    End With 

    Selection.End = Selection.Start 'Word selects first instance; unselect again 

    GoTo Built_In 

 

    Exit Sub 

 



Built_In: 

    'Show Word's built-in Replace dialog 

    CommandBars("Menu Bar").Controls("&Edit").Controls("R&eplace...").Execute 

End Sub 

 

 

----- 

No virus found in this message. 

Checked by AVG - www.avg.com 

Version: 10.0.1170 / Virus Database: 426/3277 - Release Date: 11/24/10 

 

 

 

##################################################### 

Sub zCommonWordSwitch() 

' Version 12.11.10 

myWds = ",that|which,which|that,last|past,past|final,final,previous,previous|last," 

myWds = myWds & "like|such as,Like|As with,than|from," 

myWds = myWds & "England|the UK,Holland|the Netherlands," 

myWds = myWds & "Continuously|Continually,Continually|Continuously,Due|Owing," 

myWds = myWds & "Continuous|Continual,Continual|Continuous," 

myWds = myWds & "continuously|continually,continually|continuously,due|owing," 

myWds = myWds & "continuous|continual,continual|continuous,however|but," 

myWds = myWds & "as|because,an|one,a|one,An|One,A|One,is|are,are|is,to|from," 

myWds = myWds & "°| degrees,may|might,might|may,ad hoc|occasional,so|therefore," 

myWds = myWds & "&|and,instantly|instantaneously,for|because," 

myWds = myWds & "Added|Improved," 

myWds = myWds & "degree|!°,degrees|!°,percent|!%,per cent|!%," 

' Use 'per cent' or 'percent' for UK/US spelling 

If Selection.LanguageID = wdEnglishUK Then 

  myWds = myWds & "%| per cent," 

Else 

  myWds = myWds & "%| percent," 

End If 

 

Selection.End = Selection.Start 

If Asc(Selection) = 32 Then 

  Selection.MoveStart wdCharacter, 2 

  Exit Sub 

End If 

Selection.MoveLeft Unit:=wdWord, Count:=1 

Selection.MoveRight Unit:=wdWord, Count:=1, Extend:=wdExtend 

If Right(Selection, 1) = " " Then Selection.MoveEnd , -1 

' check if this "word" includes a close single curly quote 

If Right(Selection, 1) = Chr(146) Then Selection.MoveEnd , -1 

thisWd = Selection 

 

' Look through the list of words 

WordPos = InStr(myWds, thisWd & "|") 

If WordPos > 0 Then 

  myWds = Right(myWds, Len(myWds) - WordPos - Len(thisWd)) 

  newWd = Left(myWds, InStr(myWds, ",") - 1) 

  ' If it starts with "!", delete it and delete 

  ' the previous character in the text 

  If Asc(newWd) = 33 Then 

    newWd = Right(newWd, Len(newWd) - 1) 

    Selection.Start = Selection.Start - 1 



  End If 

  Selection.TypeText Text:=newWd 

  Selection.MoveLeft Unit:=wdCharacter, Count:=1 

Else 

' If no word found, assume that an added 'that' is needed 

  Selection.Start = Selection.End 

  nextChar = Selection 

  If nextChar = "," Then Selection.MoveRight Unit:=wdCharacter, Count:=1 

  Selection.TypeText Text:=" that" 

End If 

End Sub 

 

##################################################### 

Geoff Hart shows a pair of macros that switch between two user names in 

his book "Effective Onscreen Editing," which is where I found out about 

them. (See http://www.geoff-hart.com/books/eoe/onscreen-book.htm) 

 

The macros are simple. Let's assume you want to switch between a user 

name called "Copyeditor" and your own name. Insert the following code 

into your Visual Basic Editor (You can give the macros any names you 

wish, of course): 

 

Sub CopyeditorUserName() 

     Application.UserName = "Copyeditor" 

     Application.UserInitials = "CE" 

End Sub 

 

Sub MyOwnUserName() 

     Application.UserName = "Shmuel Gerber" 

     Application.UserInitials = "SG" 

End Sub 

 

 

##################################################### 

 

' Jacq Harvey 

Do 

  With Selection.Find 

    .ClearFormatting 

    .Replacement.ClearFormatting 

    .Text = " (" 

    .Forward = True 

    .Wrap = False 

    .Format = False 

    .MatchWildcards = False 

    .Execute 

  End With 

  If Selection.Find.Found = False Then Exit Sub 

  Selection.TypeParagraph 

 

 

  With Selection.Find 

    .ClearFormatting 

    .Replacement.ClearFormatting 

    .Text = "). " 

    .Replacement.Text = "^t" 

    .Forward = True 



    .Wrap = False 

    .Format = False 

    .MatchWildcards = False 

    .Execute Replace:=wdReplaceOne 

  End With 

 

  If Selection.Find.Found = False Then 

    With Selection.Find 

      .ClearFormatting 

      .Replacement.ClearFormatting 

      .Text = ") " 

      .Replacement.Text = "^t" 

      .Forward = True 

      .Wrap = False 

      .Format = False 

      .MatchWildcards = False 

      .Execute Replace:=wdReplaceOne 

    End With 

  End If 

  Selection.Start = Selection.End 

  Selection.MoveDown Unit:=wdParagraph, Count:=1 

Loop Until Selection.Find.Found = False 

 

 

##################################################### 

Sub TrimNoteSeparator() 

 

' Macro recorded 9/28/2010 by P Beverley 

 

  ActiveDocument.TrackRevisions = False 

 

  ActiveWindow.View.Type = wdNormalView 

  ActiveWindow.View.SplitSpecial = wdPaneEndnotes 

  ActiveWindow.View.SplitSpecial = wdPaneEndnoteSeparator 

  Selection.EndKey Unit:=wdLine 

  Selection.EndKey Unit:=wdStory, Extend:=wdExtend 

  Selection.TypeBackspace 

  ActiveWindow.View.SplitSpecial = wdPaneEndnoteContinuationSeparator 

  Selection.EndKey Unit:=wdLine 

  Selection.EndKey Unit:=wdStory, Extend:=wdExtend 

  Selection.TypeBackspace 

  ActiveWindow.ActivePane.Close 

  ActiveWindow.View.Type = wdPrintView 

 

  ActiveDocument.TrackRevisions = True 

End Sub 

 

 

##################################################### 

 

autolistoff 

 

 

Just remembered I tweaked mine so that the macro turns off autonumbering for you: 

 

Application.Options.AutoFormatAsYouTypeApplyBulletedLists = False 

Application.Options.AutoFormatAsYouTypeApplyNumberedLists = False 



ActiveDocument.ConvertNumbersToText 

 

If you wanted, you could have another macro on your QAT to turn autonumbering back on afterwards: 

Sub AutonumbersOn() 

' 

' Turns autonumbering back on after running the 

' ConvertAutNumbersToText macro 

 

Application.Options.AutoFormatAsYouTypeApplyBulletedLists = True 

Application.Options.AutoFormatAsYouTypeApplyNumberedLists = True 

 

End Sub 

 

 

##################################################### 

To find any Greek character from your normal (i.e. non-Symbol) font, do a wildcard search for: 

[<Greek Capital Letter Alpha>-<Greek Small Letter Omega>] 

Where <Greek Capital Letter Alpha> is obtained by holding down the Alt key and typing 913 on the numeric 

keypad (with Num Lock on) and <Greek Small Letter Omega> is obtained by Alt-969. (I used the hexadecimal-to-

decimal converter at http://www.statman.info/conversions/hexadecimal.html to find the decimal equivalent of the 

hexademical number that the Insert Symbol dialog box displays.) 

 

The website says: "Since all characters from decorative fonts (Symbol-, Wingdings-fonts ...) are kept in a special 

code page from &HF000 to &HF0FF, you can search for them with  [Alt61472-Alt61695]." 

 

 

Sub Greekfind() 

    Selection.Find.ClearFormatting 

    With Selection.Find 

        .Text = "[" & ChrW(894) & "-" & ChrW(974) & "]" 

        .Replacement.Text = "" 

        .Forward = True 

        .Wrap = wdFindContinue 

        .Format = False 

        .MatchCase = False 

        .MatchWholeWord = False 

        .MatchAllWordForms = False 

        .MatchSoundsLike = False 

        .MatchWildcards = True 

    End With 

    Selection.Find.Execute 

End Sub 

 

 

Sub Symbolfind() 

    Selection.Find.ClearFormatting 

    Selection.Find.Replacement.ClearFormatting 

    With Selection.Find 

        .Text = "[" & ChrW(61472) & "-" & ChrW(61695) & "]" 

        .Replacement.Text = "" 

        .Forward = True 

        .Wrap = wdFindContinue 

        .Format = False 

        .MatchCase = False 

        .MatchWholeWord = False 

        .MatchAllWordForms = False 

        .MatchSoundsLike = False 



        .MatchWildcards = True 

    End With 

    Selection.Find.Execute 

End Sub 

 

Date: Wed, 11 Aug 2010 13:40:38 +0100 

From: Paul Beverley <paul@archivepub.co.uk> 

To: SfEPLine@yahoogroups.com 

Subject: Re: [SfEPLine] Searching for Symbol font and normal Greek characters 

 

 

> To find any Greek character from your normal (i.e. non-Symbol) font, do a wildcard search for: 

 

> [<Greek Capital Letter Alpha>-<Greek Small Letter Omega>] 

> 

 

Thanks for these, Andrew. Most helpful. 

 

If FRedit users want to do the same sort of thing, you can use, say, 

 

~[<Greek Capital Letter Alpha>-<Greek Small Letter Omega>]|& 

 

 

(where - as before - <Greek Capital Letter Alpha> is obtained etc, etc) 

 

and highlight the line in a particular colour, and then all those Greek 

chars will be highlighted, so you can see which they are. 

 

 

> (I used the hexadecimal-to-decimal converter at http://www.statman. 

> info/conversions/hexadecimal.html to find the decimal equivalent of 

> the hexademical number that the Insert Symbol dialog box displays.) 

> 

> The website says: "Since all characters from decorative fonts 

> (Symbol-, Wingdings-fonts ...) are kept in a special code page from 

> &HF000 to &HF0FF, you can search for them with  [Alt61472-Alt61695]." 

 

 

As it stands, FRedit can only look for these Symbols & Wingdings one 

at a time, so you can't use this clever trick (not yet, anyway :-). 

 

So the FRedit script line: 

 

<&HF067>|^& 

 

if highlighted, would highlight all the Symbol deltas. 

 

(Note, the <> brackets are actually what you type into the FRedit 

script, literally.) 

 

 

> 

> In my testing so far, this seems to work! 

> 

> I have recorded simple macros with shortcut keys for both of these searches, and these are given below. 

> 

> Andrew 



> 

> 

> Sub Greekfind() 

>     Selection.Find.ClearFormatting 

>     With Selection.Find 

>         .Text = "[" & ChrW(894) & "-" & ChrW(974) & "]" 

 

I see you've extended the range here. Above you say 913 - 969, so 

what have you added? 

 

 

 

 

All the best, 

 

Paul 

 

 

 

Paul Beverley (Archive Publications) 

 

Editing & proofreading services  01603-722544 - http://www.archivepub.co.uk 

 

'Macros for editors' available free: http://www.archivepub.co.uk/TheBook 

 

##################################################### 

To: SfEPLine@yahoogroups.com 

Date: Fri, 25 Jun 2010 10:00:09 +0100 

Subject: Re: [SfEPLine] Re: navigating bookmarked references in 

 =?iso-8859-1?Q?Word=A0?= 2007 

 

Shift-F5 can be useful but I find it a bit limited so I have created some macros and keyboard shortcuts to set (or 

move if it already exists) and to go to two bookmarks: "Edited_to-here" and "Second_Edited_to_here". I might use 

the former for the actual editing point and the latter for the references at the end of the document. 

 

You can of course set whatever keyboard shortcuts you want, but my scheme is Ctrl-F11, F11, Ctrl-F10 and F10, 

respectively, for the four self-explanatory macros below. 

 

Andrew 

 

Sub edited_to_here_bookmark() 

    With ActiveDocument.Bookmarks 

        .Add Range:=Selection.Range, Name:="Edited_to_here" 

        .DefaultSorting = wdSortByName 

        .ShowHidden = False 

    End With 

        Selection.GoTo What:=wdGoToBookmark, Name:="Edited_to_here" 

    Selection.Find.ClearFormatting 

    With Selection.Find 

        .Text = "" 

        .Replacement.Text = "" 

        .Forward = True 

        .Wrap = wdFindContinue 

        .Format = False 

        .MatchCase = False 

        .MatchWholeWord = False 

        .MatchWildcards = False 



        .MatchSoundsLike = False 

        .MatchAllWordForms = False 

    End With 

End Sub 

 

Sub go_to_edited_to_here_bookmark() 

    Selection.GoTo What:=wdGoToBookmark, Name:="Edited_to_here" 

    Selection.Find.ClearFormatting 

    With Selection.Find 

        .Text = "" 

        .Replacement.Text = "" 

        .Forward = True 

        .Wrap = wdFindContinue 

        .Format = False 

        .MatchCase = False 

        .MatchWholeWord = False 

        .MatchWildcards = False 

        .MatchSoundsLike = False 

        .MatchAllWordForms = False 

    End With 

End Sub 

 

Sub second_edited_to_here_bookmark() 

    With ActiveDocument.Bookmarks 

        .Add Range:=Selection.Range, Name:="Second_Edited_to_here" 

        .DefaultSorting = wdSortByName 

        .ShowHidden = False 

    End With 

        Selection.GoTo What:=wdGoToBookmark, Name:="Second_Edited_to_here" 

    Selection.Find.ClearFormatting 

    With Selection.Find 

        .Text = "" 

        .Replacement.Text = "" 

        .Forward = True 

        .Wrap = wdFindContinue 

        .Format = False 

        .MatchCase = False 

        .MatchWholeWord = False 

        .MatchWildcards = False 

        .MatchSoundsLike = False 

        .MatchAllWordForms = False 

    End With 

End Sub 

 

Sub go_to_second_edited_to_here_bookmark() 

    Selection.GoTo What:=wdGoToBookmark, Name:="Second_Edited_to_here" 

    Selection.Find.ClearFormatting 

    With Selection.Find 

        .Text = "" 

        .Replacement.Text = "" 

        .Forward = True 

        .Wrap = wdFindContinue 

        .Format = False 

        .MatchCase = False 

        .MatchWholeWord = False 

        .MatchWildcards = False 

        .MatchSoundsLike = False 



        .MatchAllWordForms = False 

    End With 

End Sub 

 

At 09:45 on 25/06/2010  (Friday), Hazel Reid wrote: 

>Andrew said < what about Shift-F5, which moves the cursor back to the 

>previous editing point(s) in the document? When you reopen a file, it can 

>also move the cursor to the place where it was when the file was last 

>saved.> 

> 

>Andrew, that is brilliant.  I was just at the point of opening the book I’m 

>working on and it went straight to the point where I stopped last night! 

>Sheer magic.  Thanks. 

> 

>Hazel 

 

 

 

------------------------------------ 

 

Comments posted on SfEPLine are the opinions of whoever does the posting and not those of the Society for 

Editors and Proofreaders. SfEPLine emails and digests are intended for the addressee only and may contain 

information that is privileged and confidential; their contents may not be divulged to people outside the Society 

without the express permission of the author. If you are not the intended recipient, you must not copy, distribute or 

take any action in reliance on any SfEPLine email or digest. 

 

Call the office for queries: 020-8785-5617. Website: www.sfep.org.ukYahoo! Groups Links 

 

<*> To visit your group on the web, go to: 

    http://groups.yahoo.com/group/SfEPLine/ 

 

<*> Your email settings: 

    Individual Email | Traditional 

 

<*> To change settings online go to: 

    http://groups.yahoo.com/group/SfEPLine/join 

    (Yahoo! ID required) 

 

<*> To change settings via email: 

 

##################################################### 

 

Sub FootnoteConverter() 

' Version 29.05.10 

' Remember current highlight colour ... 

OldColour = Options.DefaultHighlightColorIndex 

' ... and select preferred colour 

Options.DefaultHighlightColorIndex = wdTurquoise 

 

' Add a text number next to each footnote number 

numFoots = ActiveDocument.Footnotes.Count 

For i = 1 To numFoots 

  With Selection.Find 

    .ClearFormatting 

    .Replacement.ClearFormatting 

    .Text = "^f" 

    .Replacement.Text = "^&" & Replace(Str(i), " ", "") 



    .Replacement.Highlight = True 

    .Wrap = wdFindContinue 

    .MatchWildcards = False 

    .Execute Replace:=wdReplaceOne 

  End With 

  Selection.MoveRight Unit:=wdWord, Count:=1 

Next 

 

' Find the place where you want to put the notes 

With Selection.Find 

  .Text = "References" 

  .Style = ActiveDocument.Styles("Heading 2") 

  .Forward = True 

  .MatchWildcards = False 

  .Execute 

End With 

Selection.MoveLeft Unit:=wdCharacter, Count:=2 

 

' Prepare to put notes at the end of the text 

' Selection.EndKey Unit:=wdStory 

Selection.TypeParagraph 

 

' Create "Notes" heading 

Selection.Style = ActiveDocument.Styles("Heading 2") 

Selection.TypeText Text:="Notes" & vbCrLf 

Selection.ClearFormatting 

 

' Copy each of the footnotes, give it a number 

' and paste it at the end of the main text 

For i = 1 To numFoots 

  Set rng = ActiveDocument.Footnotes(i).Range 

  rng.Copy 

  Selection.TypeText Text:=Replace(Str(i), " ", "") & " " 

  Selection.Paste 

  Selection.TypeParagraph 

Next 

 

' Delete all the footnotes 

For Each fn In ActiveDocument.Footnotes 

  fn.Delete 

Next 

 

Options.DefaultHighlightColorIndex = OldColour 

 

End Sub 

 

##################################################### 

Sub NotesReembed() 

' Version 24.08.10 

Selection.HomeKey Unit:=wdLine 

firstChar = Selection 

If firstChar <> "1" Then 

  myResponse = MsgBox("Is this the first line of the notes?", _ 

   vbQuestion + vbYesNo) 

  If myResponse = vbNo Then Exit Sub 

End If 

 



'Put a marker at the beginning of the footnotes 

Selection.InsertAfter Text:="zxczxc" & vbCrLf 

 

'If line starts with a tab, strip them 

If Asc(firstChar) = 99 Then 

  Selection.HomeKey Unit:=wdLine 

  With Selection.Find 

    .ClearFormatting 

    .Replacement.ClearFormatting 

    .Text = "^p^t" 

    .Replacement.Text = "^p" 

    .Wrap = False 

    .Forward = True 

    .Execute Replace:=wdReplaceAll 

  End With 

End If 

Do 

  Selection.HomeKey Unit:=wdStory 

  ' Find the footnote marker 

  With Selection.Find 

    .ClearFormatting 

    .Replacement.ClearFormatting 

    .Text = "zxczxc" 

    .Replacement.Text = "" 

    .Wrap = wdFindContinue 

    .Forward = True 

    .Execute 

  End With 

  myStart = Selection.End + 1 

  Selection.Start = myStart 

 

  ' Get the note number 

  Selection.End = myStart + 5 

  myNote = Val(Selection) 

 

  'Give up if you've reached the end 

  If myNote = 0 Then Exit Do 

 

  ' Select the footnote 

  Selection.End = myStart 

  Selection.MoveDown Unit:=wdParagraph, Count:=1, Extend:=wdExtend 

  myPara = Selection 

 

  ' Find the first space, i.e. after the note number 

  spacePlace = InStr(myPara, " ") 

  Selection.MoveEnd , -1 

  Selection.MoveStart , spacePlace 

  Selection.Copy 

  Selection.Start = myStart 

  ' Delete the used footnote 

  Selection.MoveEnd , 1 

  Selection.Delete 

 

  ' Find the note citation (superscript number) 

  Selection.HomeKey Unit:=wdStory 

  With Selection.Find 

    .ClearFormatting 



    .Replacement.ClearFormatting 

    .Text = Trim(Str(myNote)) 

    .Font.Superscript = True 

    .Replacement.Font.Superscript = False 

    .Replacement.Text = "" 

    .Wrap = wdFindContinue 

    .Forward = True 

    .Execute 

  End With 

  ' Delete the superscript number and add a footnote 

  Selection.Delete 

  With ActiveDocument.Range(Start:=ActiveDocument.Content.Start, End:= _ 

    ActiveDocument.Content.End) 

    With .FootnoteOptions 

      .Location = wdBottomOfPage 

      .NumberingRule = wdRestartContinuous 

      .StartingNumber = 1 

      .NumberStyle = wdNoteNumberStyleArabic 

    End With 

    .Footnotes.Add Range:=Selection.Range, Reference:="" 

  End With 

  ' Paste in the text of the footnote 

  Selection.Paste 

Loop Until myNote = 0 

 

' Tidy up and go home 

Selection.HomeKey Unit:=wdStory 

With Selection.Find 

  .ClearFormatting 

  .Replacement.ClearFormatting 

  .Text = "zxczxc" 

  .Replacement.Text = "" 

  .Wrap = wdFindContinue 

  .Forward = True 

  .Execute Replace:=wdReplaceOne 

End With 

With Selection.Find 

  .ClearFormatting 

  .Replacement.ClearFormatting 

  .Text = "" 

End With 

Selection.EndKey Unit:=wdStory 

 

End Sub 

 

##################################################### 

Sub FReditInstructions() 

Documents.Open filename:="C:\Program Files\VirtualAcorn\VirtualRPC-

SA\HardDisc4\MyFiles2\WIP\zzzTheBook\Macros4Editors.doc" 

Selection.HomeKey Unit:=wdStory 

With Selection.Find 

  .ClearFormatting 

  .Replacement.ClearFormatting 

  .Text = "1. How the Macro Works" 

  .Replacement.Text = "" 

  .MatchWildcards = False 

  .Execute 



End With 

startHere = Selection.Start 

Selection.End = Selection.Start 

With Selection.Find 

  .ClearFormatting 

  .Replacement.ClearFormatting 

  .Text = "5. List of Short Script" 

  .Replacement.Text = "" 

  .MatchWildcards = False 

  .Execute 

End With 

Selection.End = Selection.Start 

Selection.Start = startHere 

Selection.Copy 

Documents.Open filename:="C:\Program Files\VirtualAcorn\VirtualRPC-

SA\HardDisc4\MyFiles2\WIP\zzzFRedit\1_Instructions.doc" 

Selection.HomeKey Unit:=wdStory 

With Selection.Find 

  .ClearFormatting 

  .Replacement.ClearFormatting 

  .Text = "1. How the Macro Works" 

  .Replacement.Text = "" 

  .MatchWildcards = False 

  .Execute 

End With 

startHere = Selection.Start 

Selection.End = Selection.Start 

With Selection.Find 

  .ClearFormatting 

  .Replacement.ClearFormatting 

  .Text = "Well, that's it." 

  .Replacement.Text = "" 

  .MatchWildcards = False 

  .Execute 

End With 

Selection.End = Selection.Start 

Selection.Start = startHere 

Selection.Delete 

Selection.Paste 

End Sub 

 

Sub FReditMacro() 

Documents.Open filename:="C:\Program Files\VirtualAcorn\VirtualRPC-

SA\HardDisc4\MyFiles2\WIP\zzzTheBook\Macros4Editors.doc" 

Selection.HomeKey Unit:=wdStory 

With Selection.Find 

  .ClearFormatting 

  .Replacement.ClearFormatting 

  .Text = "Sub FRedit()^p'" 

  .Replacement.Text = "" 

  .MatchWildcards = False 

  .Execute 

End With 

startHere = Selection.Start 

Selection.End = Selection.Start 

With Selection.Find 

  .ClearFormatting 



  .Replacement.ClearFormatting 

  .Text = "Textalyse Macro" 

  .Replacement.Text = "" 

  .MatchWildcards = False 

  .Execute 

End With 

Selection.End = Selection.Start 

Selection.Start = startHere 

Selection.Font.Reset 

Selection.TypeBackspace 

Selection.MoveUp Unit:=wdLine, Count:=1 

Selection.TypeParagraph 

Selection.Paste 

 

Documents.Open filename:="C:\Program Files\VirtualAcorn\VirtualRPC-

SA\HardDisc4\MyFiles2\WIP\zzzTheBook\zzFRedit\2_Macro.doc" 

Selection.WholeStory 

Selection.Delete 

Selection.Paste 

 

Selection.HomeKey Unit:=wdStory 

With Selection.Find 

  .ClearFormatting 

  .Replacement.ClearFormatting 

  .Text = "Sub FRedit()^p" 

  .Replacement.Text = "" 

  .MatchWildcards = False 

  .Execute Replace:=wdReplaceOne 

End With 

 

With Selection.Find 

  .ClearFormatting 

  .Replacement.ClearFormatting 

  .Text = "End Sub" 

  .Replacement.Text = "" 

  .MatchWildcards = False 

  .Execute Replace:=wdReplaceOne 

End With 

 

Selection.HomeKey Unit:=wdStory 

 

End Sub 

 

##################################################### 

Sub RevisionCount() 

TrackState = ActiveDocument.TrackRevisions 

ActiveDocument.TrackRevisions = False 

 

Dim numDelete As Long, numInsert As Long, _ 

    numFormat As Long, numOther As Long, _ 

    numChanges As Long 

 

numChanges = ActiveDocument.Revisions.Count 

i = numChanges 

For Each rev In ActiveDocument.Revisions 

'  ActiveDocument.Revisions(i).Range.Select 

  i = i - 1 



  JLJ = rev.Range 

  vChange = rev.Type 

  Select Case vChange 

    Case wdRevisionDelete: numDelete = numDelete + 1 

    Case wdRevisionInsert: numInsert = numInsert + 1 

    Case wdRevisionParagraphProperty: numFormat = numFormat + 1 

    Case wdRevisionSectionProperty: numFormat = numFormat + 1 

    Case wdRevisionStyleDefinition: numFormat = numFormat + 1 

    Case wdRevisionTableProperty: numFormat = numFormat + 1 

    Case wdRevisionProperty: numRevProp = numRevProp + 1 

  Case Else 

    numOther = numOther + 1 

' Not implemented: 

xcvxc = wdNoRevision: xcvxc = wdRevisionReconcile 

xcvxc = wdRevisionConflict: xcvxc = wdRevisionDisplayField 

xcvxc = wdRevisionParagraphNumber 

xcvxc = wdRevisionReplace: xcvxc = wdRevisionStyle 

  End Select 

  If i Mod 10 = 0 Then StatusBar = Str(i) 

Next rev 

 

Selection.EndKey Unit:=wdStory 

' Have to do it again. Weird! 

Selection.EndKey Unit:=wdStory 

' If you are at the site of a revision, 

' it doesn't work first time! 

 

 

Selection.TypeText Text:=vbCrLf & "Total:  " & Str(numChanges) & vbCrLf 

Selection.TypeText Text:="Deletes: " & Str(numDelete) & vbCrLf 

Selection.TypeText Text:="Inserts:" & Str(numInsert) & vbCrLf 

Selection.TypeText Text:="Formats:" & Str(numFormat) & vbCrLf 

Selection.TypeText Text:="Revision property:" & Str(numRevProp) & vbCrLf 

Selection.TypeText Text:="Other:" & Str(numOther) & vbCrLf 

 

numMissing = numChanges - numOther - numDelete - numInsert _ 

     - numFormat - numRevProp 

 

StatusBar = "" 

 

ActiveDocument.TrackRevisions = TrackState 

Exit Sub 

 

##################################################### 

 

Sub ItalicCount() 

' Version 22.07.2010 

 

Selection.EndKey Unit:=wdStory 

theEnd = Selection.Start 

 

' copy all the footnotes to the end of the text 

If ActiveDocument.Footnotes.Count > 0 Then 

  For Each fn In ActiveDocument.Footnotes 

    fn.Range.Copy 

    Selection.Paste 

  Next 



End If 

 

' copy all the endnotes to the end of the text 

If ActiveDocument.Endnotes.Count > 0 Then 

  For Each fn In ActiveDocument.Endnotes 

    fn.Range.Copy 

    Selection.Paste 

  Next 

End If 

 

' copy all the textboxes to the end of the text 

Set rng = ActiveDocument.Range 

rng.Start = rng.End 

If ActiveDocument.Shapes.Count > 0 Then 

  For Each shp In ActiveDocument.Shapes 

    If shp.TextFrame.HasText Then 

      Set rng2 = shp.TextFrame.TextRange 

      rng2.Copy 

      rng.Paste 

      rng.Start = rng.End 

    End If 

  Next 

End If 

 

Selection.HomeKey Unit:=wdStory 

totItalic = 0 

totRoman = 0 

totChars = ActiveDocument.Characters.Count 

For Each myChar In ActiveDocument.Characters 

  If myChar.Font.Italic = True Then 

    totItalic = totItalic + 1 

  Else 

    totRoman = totRoman + 1 

  End If 

If totItalic Mod 100 = 0 Then StatusBar = _ 

     "    Press <Ctrl-Break> to stop.      " _ 

     & "Remaining:  " & Int((totChars - totItalic - totRoman) / 100) 

Next 

 

Selection.EndKey Unit:=wdStory 

Selection.Start = theEnd 

Selection.Delete 

Selection.HomeKey Unit:=wdStory 

 

StatusBar = "" 

MsgBox ("Italic: " & totItalic & vbCrLf & vbCrLf _ 

     & "Roman: " & totRoman) 

 

End Sub 

 

 

##################################################### 

From: http://wordribbon.tips.net/Pages/T008922_Examining_Tracked_Changes_in_a_Macro.html 

  

 

 

Examining Tracked Changes in a Macro (2007/10) 



 

Summary: The Track Changes feature in Word is very handy when 

you need to see what edits are made to a document. Using a macro you 

can even access the changes to see what they are. Here's how to get at 

the most elemental of the change information. (This tip works with MS 

Word 2007, and Word 2010. You can find a version of this tip for the 

older menu interface of Word here: Examining Tracked Changes in a 

Macro.) 

 

If you need to develop a macro to process a document in which changes 

have been tracked (using the Track Changes feature), you may wonder 

how you can determine the number of changes in the document and 

how you can look at each of the changes, programmatically. It isn't that 

tough to do if you remember that the changes are organized in using the 

Revisions collection. This means that you can determine the number of 

changes using this code: 

 

 

iNumChanges = ActiveDocument.Revisions.Count 

 

Just like any other collection, you can step through each member of the 

Revisions collection and figure out various information about the 

change represented in the member. While the details of what properties 

and methods belong to the Revisions collection is much too voluminous 

for this tip, you can determine the type of each change by looking at the 

Type property, in this manner: 

 

 

vChange = ActiveDocument.Revisions(1).Type 

 

At this point vChange will be equal to one of 14 possible revision types. 

These revision types can be referenced by the built-in constants 

wdNoRevision, wdRevisionDelete, wdRevisionInsert, 

wdRevisionParagraphProperty, wdRevisionReconcile, 

wdRevisionSectionProperty, wdRevisionStyleDefinition, 

wdRevisionConflict, wdRevisionDisplayField, 

wdRevisionParagraphNumber, wdRevisionProperty, 

wdRevisionReplace, wdRevisionStyle, and wdRevisionTableProperty. 

 

Additional information can be found in Word's Help system or by 

searching the Internet for the phrase "revisions collection". 

 

 

 

##################################################### 

Examining Tracked Changes in a Macro (2002/3) 

 

Summary: The Track Changes feature in Word is very handy when 

you need to see what edits are made to a document. Using a macro 

you can even access the changes to see what they are. Here's how to 

get at the most elemental of the change information. (This tip works 

with Microsoft Word 97, Word 2000, Word 2002, and Word 2003. 

You can find a version of this tip for the ribbon interface of Word 

(Word 2007 and later) here: Examining Tracked Changes in a 

Macro.) 

 

If you need to develop a macro to process a document in which 



changes have been tracked (using the Track Changes feature), you 

may wonder how you can determine the number of changes in the 

document and how you can look at each of the changes, 

programmatically. It isn't that tough to do if you remember that the 

changes are organized in using the Revisions collection. This means 

that you can determine the number of changes using this code: 

 

 

iNumChanges = ActiveDocument.Revisions.Count 

 

Just like any other collection, you can step through each member of 

the Revisions collection and figure out various information about the 

change represented in the member. While the details of what 

properties and methods belong to the Revisions collection is much 

too voluminous for this tip, you can determine the type of each 

change by looking at the Type property, in this manner: 

 

 

vChange = ActiveDocument.Revisions(1).Type 

 

At this point vChange will be equal to one of 14 possible revision 

types. These revision types can be referenced by the built-in 

constants wdNoRevision, wdRevisionDelete, wdRevisionInsert, 

wdRevisionParagraphProperty, wdRevisionReconcile, 

wdRevisionSectionProperty, wdRevisionStyleDefinition, 

wdRevisionConflict, wdRevisionDisplayField, 

wdRevisionParagraphNumber, wdRevisionProperty, 

wdRevisionReplace, wdRevisionStyle, and 

wdRevisionTableProperty. 

 

Additional information can be found in Word's Help system or by 

searching the Internet for the phrase "revisions collection". 

 

 

 

##################################################### 

Sub JumpUp2() 

' 

' JumpUp2 Macro 

' Macro recorded 7/12/2010 by P Beverley 

' 

  With ActiveDocument.Bookmarks 

    .Add Range:=Selection.Range, Name:="ComeBackHere2" 

    .DefaultSorting = wdSortByName 

    .ShowHidden = True 

  End With 

  Selection.HomeKey Unit:=wdStory 

  Selection.GoTo What:=wdGoToBookmark, Name:="ComeBackHere2" 

  Selection.Find.ClearFormatting 

  With Selection.Find 

    .Text = "Needham" 

    .Replacement.Text = "emporia" 

    .Forward = True 

    .Wrap = wdFindContinue 

    .Format = False 

    .MatchCase = False 

    .MatchWholeWord = False 



    .MatchWildcards = False 

    .MatchSoundsLike = False 

    .MatchAllWordForms = False 

  End With 

End Sub 

 

##################################################### 

' Sub MultiFileComment() 

myResponse = MsgBox("Comment collector: Word" & vbCrLf & _ 

     "Have you opened the first file?", vbQuestion + vbYesNo) 

If myResponse = vbNo Then Exit Sub 

 

myFolder = ActiveDocument.Path 

ActiveDocument.Close SaveChanges:=False 

 

Set myFileSystem = CreateObject("Scripting.FileSystemObject") 

Set myFileList = myFileSystem.GetFolder(myFolder).Files 

 

If Word.Documents.Count = 0 Then Documents.Add 

Set myList = ActiveDocument 

blankLine = vbCrLf & vbCrLf 

FilesTotal = 0 

For Each myFile In myFileList 

  myFileType = Right(myFile, 4) 

  If myFileType = ".doc" Or myFileType = "docx" Or myFileType = ".rtf" Then 

    Set myDoc = Application.Documents.Open(filename:=myFile.Path, ReadOnly:=True) 

 

    If ActiveDocument.Comments.Count >= 1 Then 

      ActiveDocument.StoryRanges(wdCommentsStory).Copy 

      myList.Activate 

      myDocName = myDoc.Name 

      Selection.TypeText Text:=myDocName & vbCrLf 

      Selection.MoveUp Unit:=wdLine, Count:=1, Extend:=wdExtend 

      Selection.Font.Bold = True 

      Selection.EndKey Unit:=wdStory 

      Selection.Paste 

      Selection.TypeText Text:=vbCrLf & vbCrLf 

    End If 

 

    myDoc.Close SaveChanges:=wdDoNotSaveChanges 

    FilesTotal = FilesTotal + 1 

  End If 

Next 

MsgBox ("Files checked" + Str(FilesTotal)) 

 

 

' End Sub 

 

##################################################### 

 

Soundlike for spotting links between words - didn't work. 

 

Dim myCol(20) 

OldColour = Options.DefaultHighlightColorIndex 

myCol(1) = wdYellow 

myCol(2) = wdTurquoise 

myCol(3) = wdBrightGreen 



myCol(4) = wdPink 

myCol(5) = wdRed 

myCol(6) = wdBlue 

myCol(7) = wdLightGray 

myCol(8) = wdDarkGray 

myColTotal = 8 

nowCol = 1 

 

For Each p In ActiveDocument.Range.Paragraphs 

  Options.DefaultHighlightColorIndex = myCol(nowCol) 

  nowCol = (nowCol Mod myColTotal) + 1 

  If Len(p) > 5 And InStr(p, "-") = 0 Then 

    p.Range.Select 

    thisWordStart = Selection.Start 

    tabPos = InStr(p, Chr(9)) 

    myWord = Left(p, tabPos - 1) 

    Set rng = ActiveDocument.Range 

    rng.Start = Selection.End 

    With rng.Find 

      .ClearFormatting 

      .Replacement.ClearFormatting 

      .Highlight = False 

      .MatchWildcards = False 

      .Text = myWord 

      .Wrap = False 

      .Replacement.Text = "^&" 

      .MatchWholeWord = True 

      .MatchSoundsLike = True 

      .Replacement.Highlight = True 

      .Execute Replace:=wdReplaceOne 

    End With 

    fgkd = Selection.End 

    fgd = rng.End 

    If rng.End = ActiveDocument.Range.End Then 

      Selection.Range.HighlightColorIndex = wdColorAutomatic 

    Else 

      rng.Start = thisWordStart 

      With rng.Find 

        .Execute Replace:=wdReplaceOne 

'        .Wrap = wdFindContinue 

      End With 

    End If 

  End If 

Next 

 

Options.DefaultHighlightColorIndex = OldColour 

 

 

##################################################### 

checkLength = 100 

For Each p In ActiveDocument.Range.Paragraphs 

  paraText = p 

  If Left(paraText, 5) = "Table" Then 

    Set rng = p.Range 

    startTitle = rng.Start 

    rng.Start = rng.End 

    startTable = rng.End 



    With rng.Find 

      .ClearFormatting 

      .Replacement.ClearFormatting 

      .MatchWildcards = False 

      .Text = "^p" 

      .Replacement.Text = "" 

      .Execute 

    End With 

    rng.Start = startTable 

    tableText = rng 

    If InStr(tableText, Chr(7)) Then 

      ' This is a table 

      titleText = paraText 

      ' then chop "Table x.y" out 

      rng.Start = startTitle 

      ' now chop title = table out 

      rng.Cut 

      ' now type in "[<table x.y here] 

      rng.Select 

      Selection.typeafter 

      ' rng.Select 

    End If 

  End If 

Next 

 

##################################################### 

 

Date:         Tue, 29 Jun 2010 09:21:19 -0400 

Subject: Re: [CE-L] Tools Query: Macro to count the number of changes in Track Changes 

To:           COPYEDITING-L@LISTSERV.INDIANA.EDU 

 

The Revisions collection has a count property, making it easy to count the TOTAL number of revisions using a 

single command: 

 

Sub BigDumbErrorCounter() 

MsgBox ActiveDocument.Revisions.Count 

End Sub 

 

This macro looks only at the body of the document.  If you want to include revisions in headers, footers, textboxes 

and so on, you have to do more work with document ranges.  And keep in mind that changing something (deleting 

and overwriting with something else) counts as two changes - an insertion and a deletion. 

 

If you want to categorize the revisions, you have to examine each revision and categorize them and count in the 

different categories.  Or you could do fancy tricks with showing different types of revisions and reviewers, 

accepting what's visible, redoing the count, comparing the numbers, then undoing the accept and the hide. 

 

-  Jessica 

* Obtain permission before forwarding. Pix: http://bit.ly/7fUx9O 

* Stuff: http://bit.ly/5PONhz FAQ: http://bit.ly/4ocsZ2 

* Sub: http://bit.ly/8dsD41 Community: http://bit.ly/80YUUd 

 

 

##################################################### 

 

Date:         Mon, 28 Jun 2010 21:09:28 -0700 

Subject: Re: [CE-L] TOOLS: Changing cases 

To:           COPYEDITING-L@LISTSERV.INDIANA.EDU 



 

Julie Vaughn wrote: 

> Using Word for the Mac on my MacBook Pro, Shift-F3 toggles among the 

> three case options (uppercase, lowercase, and sentence or title case, 

> the latter depending on the text selected). 

 

If you want more refined capping without toggling individual words, 

here's one of Jack Lyon's useful freebies: 

 

Sub NewTrueTitleCase() 

'Created by Jack M. Lyon 

'updated by Hilary Powers to ignore head levels 

'http://www.editorium.com 

    Selection.Range.Case = wdTitleWord 

    For Each wrd In Selection.Range.Words 

     Select Case Trim(wrd) 

      Case "A", "An", "As", "At", "And", "But", _ 

      "By", "For", "From", "In", "Into", "Of", _ 

      "On", "Onto", "Or", "The", _ 

      "To", "Unto", "With" 

      wrd.Case = wdLowerCase 

     End Select 

    Next wrd 

    wrdCount = Selection.Range.Words.Count 

    Selection.Range.Words(1).Case = wdTitleWord 

    Selection.Range.Words(wrdCount - 1).Case = wdTitleWord 

    strLength = Selection.Range.Characters.Count 

    For i = 1 To strLength 

     If Selection.Range.Characters(i) = ":" Then 

      Selection.Range.Characters(i + 2).Case = wdTitleWord 

     End If 

    Next i 

End Sub 

 

It takes a selection and applies true title case, lowercasing 

prepositions and articles except at the beginning and end, and following 

a colon. 

 

 

 

##################################################### 

 

' Changes the initial letter after a colon to lowercase 

oldFind = Selection.Find.Text 

oldReplace = Selection.Find.Replacement.Text 

rng = ActiveDocument.Range 

With Selection.Find 

  .ClearFormatting 

  .Replacement.ClearFormatting 

  .MatchWildcards = True 

  .Text = "<to>[a-zA-Z ]@ly>" 

  .Replacement.Text = "" 

  .Execute 

End With 

 

While Selection.Find.Found 

  If Selection.End - Selection.Start < 20 Then 



    Selection.Range.HighlightColorIndex = wdPink 

  End If 

  Selection.Find.Execute 

Wend 

 

With Selection.Find 

  .Text = oldFind 

  .Replacement.Text = oldReplace 

  .MatchWildcards = False 

End With 

 

 

##################################################### 

 

 

There is a property Document.ShowRevisions that can be toggled 

programmatically. Setting this property to False is the same as 

setting the menu item for revision display to "Final"--in other 

words, deletions are not displayed and insertions are displayed as 

normal (unmarked) text. But there are also other properties that come 

into play when the .ShowRevisions property is set to True thast 

detremine how the revisions are actually displayed. it would actually 

require a small decision tree to completely describe the behavior 

when .ShowRevisions is True. 

 

 

##################################################### 

 

' Go to the middle of a selection. 

 

midPoint = Int((Selection.Start + Selection.End) / 2) 

Selection.Start = midPoint 

Selection.End = midPoint 

 

 

##################################################### 

 

While something is found, do something... 

 

 

>     Selection.Find.ClearFormatting 

>     With Selection.Find 

>         .Text = "page TK" 

>         .Forward = True 

>         .Wrap = wdFindContinue 

>         .Format = False 

>         .MatchCase = True 

>         .MatchWholeWord = False 

>         .MatchWildcards = False 

>         .MatchSoundsLike = False 

>         .MatchAllWordForms = False 

>     End With 

 

While Selection.Find.Found 

    Selection.MoveEnd Unit:=wdCharacter, Count:=-2 

    Selection.InsertAfter Text:="*" 

    Selection.Find.Execute 



Wend 

 

 

##################################################### 

Find if a file is is a directory 

 

If Dir(strWindowsTempDirPath, vbDirectory) <> "" Then 

 

##################################################### 

 

Sub FindHiLi99() 

' No idea what this is! 

varExists = False 

For Each v In ActiveDocument.Variables 

  If v.Name = "hColour" Then varExists = True: Exit For 

Next v 

 

If varExists = False Then ActiveDocument.Variables.Add "hColour", 0 

searchColour = ActiveDocument.Variables("hColour") 

 

' If no text is selected, search for next highlight 

If Selection.Start = Selection.End Then GoTo FindNext 

 

' If some text is selected, see what colour it is; 

' then go find more text of that colour. 

selColour = Selection.Range.HighlightColorIndex 

If selColour > 0 Then 

  searchColour = selColour 

  ActiveDocument.Variables("hColour") = searchColour 

  GoTo FindNext 

End If 

 

Selection.Start = Selection.End 

Set rng = ActiveDocument.Text 

Do 

  With rng.Find 

   .ClearFormatting 

   .Replacement.ClearFormatting 

   .Text = "" 

   .Highlight = True 

   .Wrap = False 

   .Replacement.Text = "" 

   .Forward = True 

   .MatchWildcards = False 

   .Execute 

  End With 

 

  rng.Start = rng.End 

  myResponse = MsgBox("This colour? (Cancel = any colour)", vbQuestion + vbYesNoCancel) 

  If myResponse = vbCancel Then 

    ActiveDocument.Variables("hColour") = 0 

    Exit Sub 

  End If 

  If rng.Find.Found = False Then rng.Select: Exit Sub 

Loop Until myResponse = vbYes 

searchColour = rng.Range.HighlightColorIndex 

ActiveDocument.Variables("hColour") = searchColour 



If myResponse = vbYes Then GoTo finish 

 

FindNext: 

Set rng = ActiveDocument.Content 

rng.Start = Selection.Start 

If searchColour = 0 Then 

  With rng.Find 

   .ClearFormatting 

   .Replacement.ClearFormatting 

   .Text = "" 

   .Highlight = True 

   .Wrap = False 

   .Replacement.Text = "" 

   .Forward = True 

   .MatchWildcards = False 

   .Execute 

  End With 

Else 

  foundHlight = False 

  Do 

    With rng.Find 

     .ClearFormatting 

     .Replacement.ClearFormatting 

     .Text = "" 

     .Highlight = True 

     .Wrap = False 

     .Replacement.Text = "" 

     .Forward = True 

     .MatchWildcards = False 

     .Execute 

    End With 

    thisColour = rng.HighlightColorIndex 

    If thisColour = searchColour Or thisColour > 100 Then 

       foundHlight = True 

    End If 

  Loop Until foundHlight = True Or rng.Find.Found = False 

  If thisColour > 100 Then 

    rng.Start = rng.Start - 1 

    rng.End = rng.Start + 1 

    Do 

      hereNow = rng.Start 

      rng.Start = rng.Start + 1 

      rng.End = rng.End + 1 

      thisColour = rng.Range.HighlightColorIndex 

    Loop Until thisColour = searchColour Or rng.Start = hereNow 

    Do 

      hereNow = rng.Start 

      rng.End = rng.End + 1 

      thisColour = rng.Range.HighlightColorIndex 

    Loop Until thisColour <> searchColour Or rng.Start = hereNow 

      rng.End = rng.End - 1 

  End If 

End If 

 

finish: 

rng.Start = rng.End 

 



'With Selection.Find 

' .ClearFormatting 

' .Replacement.ClearFormatting 

' .Text = "" 

' .Replacement.Text = "" 

'End With 

 

 

End Sub 

 

################################################################### 

 

 

' Extend from cursor to the selected text 

' Sounds useful! 

 

Selection.Extend 

Selection.Extend Character:=")" 

 

 

################################################################### 

Date: Fri, 02 Apr 2010 14:21:25 +0100 

To: Paul Beverley <paul@archivepub.co.uk> 

Subject: Re: [SfEPLine] Word macro needed 

 

  Paul 

 

Your VB code uses "New DataObject", which needs the MS Forms 2.0 Object 

Library to be loaded - not always the case, and wasn't so on my PC 

(Windows 7 and MS Office 2003). You can load this manually from the VB 

editor (Tools > References), but I added the following routine to load 

it via code: 

 

//On Error Resume Next 

ActiveWorkbook.VBProject.References.AddFromGuid _ 

GUID:="{0D452EE1-E08F-101A-852E-02608C4D0BB4}", _ 

major:=2, minor:=0 

 

Just thought I'd mention it as I got a run error when I tried your macro 

for the first time. 

 

Regards 

 

*Rich Cutler* 

Project Manager 

 

------------------------------------------------------------------------ 

/*Helius* / 

Unit 8, 15 Lincoln Cottages, Brighton BN2 9UJ, UK 

T: +44 (0)1273 570536 

F: +44 (0)8700 940882 

www.helius.biz <http://www.helius.biz> 

------------------------------------------------------------------------ 

################################################################### 

 

 

Sub EndnotesToText() 



 

Dim aendnote As Endnote 

 

For Each aendnote In ActiveDocument.Endnotes 

ActiveDocument.Range.InsertAfter vbCr & aendnote.Index & vbTab & aendnote.Range 

aendnote.Reference.InsertBefore "a" & aendnote.Index & "a" 

Next aendnote 

 

For Each aendnote In ActiveDocument.Endnotes 

aendnote.Reference.Delete 

Next aendnote 

 

Selection.Find.ClearFormatting 

Selection.Find.Replacement.ClearFormatting 

 

With Selection.Find.Replacement.Font 

.Superscript = True 

End With 

With Selection.Find 

.Text = "(a)([0-9]{1,})(a)" 

.Replacement.Text = "\2" 

.Forward = True 

.Wrap = wdFindContinue 

.Format = True 

.MatchWildcards = True 

End With 

Selection.Find.Execute Replace:=wdReplaceAll 

 

End Sub 

 

 

Date: Fri, 02 Apr 2010 13:12:46 +0100 

To: Paul Beverley <paul@archivepub.co.uk> 

Subject: Re: [SfEPLine] Word macro needed 

 

Hi Paul: 

 

 

> When you say "look into the problem" it sounds as if I may not have 

> made it clear that that version I sent you does do what you asked for; 

> it does detect those funny characters on page 10 of your sample text. 

 

Sorry for my brief, and poorly worded, reply yesterday - had to rush 

out. It does indeed do what you say, and I'm very grateful for you 

taking the time to help me. I've got a macro that find Symbol font 

characters, and I'll append your macro to it, as those strange 

characters behave more like Symbol than Unicode! 

 

BTW, here are some snippets of code that you may find useful - some you 

my already have. 

 

 

*-=Rich=-* 

 

 

------------------------------------------------------ 

 



 

 

'Pastes text from the clipboard without its formatting. 

' 

'I assign the shortcut key [Shift][insert] to this 

 

Public Sub MAIN() 

WordBasic.EditPasteSpecial IconNumber:=0, Link:=0, DisplayIcon:=0, 

Class:="Word.Document.6", DataType:="Text", 

IconFileName:="C:\PROGRA~1\MSOFFI~1\WINWORD\WINWORD.EXE", 

Caption:="Microsoft Word Document" 

End Sub 

 

---------------------- 

 

Sub CutGraphics() 

' 

' Cut and highlight frames (incl. graphics) 

 

     WordBasic.ScreenUpdating 0 

 

     Options.DefaultHighlightColorIndex = wdTurquoise 

 

     Selection.Find.ClearFormatting 

     Selection.Find.Replacement.ClearFormatting 

     Selection.Find.Replacement.Highlight = True 

     With Selection.Find 

         .Text = "^g" 

         .Replacement.Text = "X" 

         .Forward = True 

         .Wrap = wdFindContinue 

         .Format = True 

         .MatchCase = False 

         .MatchWholeWord = False 

         .MatchWildcards = False 

         .MatchSoundsLike = False 

         .MatchAllWordForms = False 

     End With 

     Selection.Find.Execute Replace:=wdReplaceAll 

 

     Selection.Find.ClearFormatting 

     Selection.Find.Replacement.ClearFormatting 

 

     Selection.Find.Highlight = True 

     With Selection.Find.Replacement.Font 

         .Position = 0 

     End With 

     Selection.Find.Replacement.Highlight = True 

     With Selection.Find 

         .Text = "X" 

         .Replacement.Text = "" 

         .Forward = True 

         .Wrap = wdFindContinue 

         .Format = True 

         .MatchCase = False 

         .MatchWholeWord = False 

         .MatchWildcards = False 



         .MatchSoundsLike = False 

         .MatchAllWordForms = False 

     End With 

     Selection.Find.Execute Replace:=wdReplaceAll 

 

     Selection.Find.ClearFormatting 

     Selection.Find.Replacement.ClearFormatting 

 

     Options.DefaultHighlightColorIndex = wdYellow 

 

End Sub 

 

 

-------------------------------------------------- 

 

Sub TableStopStrip() 

 

' Deletes stops at end of paras in table entries 

 

     WordBasic.ScreenUpdating 0 

 

     Selection.Find.ClearFormatting 

     Selection.Find.Replacement.ClearFormatting 

     With Selection.Find 

         .Text = ".^p" 

         .Replacement.Text = "^p" 

         .Forward = True 

         .Wrap = wdFindContinue 

         .Format = False 

         .MatchCase = False 

         .MatchWholeWord = False 

         .MatchWildcards = False 

         .MatchSoundsLike = False 

         .MatchAllWordForms = False 

     End With 

     Selection.Find.Execute Replace:=wdReplaceAll 

 

' Resets Find/replace dialog 

 

     Selection.Find.ClearFormatting 

     Selection.Find.Replacement.ClearFormatting 

 

         With Selection.Find 

         .Text = "" 

         .Replacement.Text = "" 

         .Forward = True 

         .Wrap = wdFindContinue 

         .Format = False 

         .MatchCase = False 

         .MatchWholeWord = False 

         .MatchWildcards = False 

         .MatchSoundsLike = False 

         .MatchAllWordForms = False 

     End With 

 

' Following written by RW at Prufrock 9/9/2002 

 



Dim myTable As Table 

Dim myCell As Cell 

For Each myTable In ActiveDocument.Tables 

     For Each myCell In myTable.Range.Cells 

         myCell.Select 

         Selection.Collapse Direction:=wdCollapseEnd 

         Selection.Move Unit:=wdCharacter, Count:=-2 

         If Selection.Text = "." Then Selection.Delete 

     Next myCell 

Next myTable 

 

End Sub 

 

------------------------------------------------------------------ 

 

Sub ExtractTables() 

'////////////// 

'This macro extracts tables to another document. 

'////////////// 

Dim FirstDoc, SecondDoc As Document 

Dim i As Long 

Dim TableNumber As String 

Dim TableRg As Range 

 

     'Save a reference to the original document 

     Set FirstDoc = ActiveDocument 

     i = FirstDoc.Tables.Count 

     If i = 0 Then 

         MsgBox "No table found in this document. Macro will stop" 

         End 

     End If 

     i = 0 

 

     'Create new doc where to put the tables 

     Set SecondDoc = Documents.Add(Template:="Normal", NewTemplate:=False) 

     ActiveWindow.View.Type = wdNormalView 

 

     'Process tables 

 

     For Each myTable In FirstDoc.Tables 

         i = i + 1 

         TableNumber = "Table__" & Format(i, "0000") 

 

         'Set range to table text 

         Set TableRg = myTable.Range 

 

         'paste contents of table at end of new doc 

         Set PasteRg = SecondDoc.Range   'start with whole doc, 

         PasteRg.Collapse wdCollapseEnd  'then collapse to end 

         PasteRg.InsertParagraphBefore 

         PasteRg.InsertBefore _ 

             "**********" & TableNumber & "********" 

         PasteRg.InsertParagraphBefore 

         Set PasteRg = SecondDoc.Range   'start with whole doc, 

         PasteRg.Collapse wdCollapseEnd  'then collapse to end 

         PasteRg.FormattedText = TableRg.FormattedText 

 



         'In the main doc, Table with reference 

         Set TableRg = myTable.Range  'move range to table 

         TableRg.Collapse wdCollapseEnd 'move off it to the right 

         TableRg.InsertBefore _ 

             "**********Insert " & TableNumber & " here!********" 

         TableRg.InsertParagraphAfter 

         myTable.Delete 

     Next myTable 

 

 

End Sub 

 

 

 

 

################################################################### 

################################################################### 

 

Clear Tracking from Format Changes 

Word 2002+ will insist on tracking changes in formatting if you're tracking 

anything at all, which makes clearing the tracking after author review much 

more difficult. If you want to get all the formatting out of play at once, the 

following macro will do the job. (This is my newest toy, created after years of 

intermittent nibbling at the problem. I keep it on Alt+Ctrl+Shift+F.) 

Sub AcceptFormatChanges() 

' Macro cobbled up 8/14/06 by Hilary Powers 

' Based on commands revealed by Keri Morgret 

' Use only on file that opens with all markup visible! 

' Next four lines toggle all display of changes off. 

WordBasic.ShowFormatting 

WordBasic.ShowInkAnnotations 

WordBasic.ShowInsertionsAndDeletions 

WordBasic.ShowComments 

' Toggle display of formatting back on. 

WordBasic.ShowFormatting 

' Approve formatting changes. 

WordBasic.AcceptAllChangesShown 

' Next three lines toggle everything else back on. 

WordBasic.ShowInsertionsAndDeletions 

WordBasic.ShowComments 

WordBasic.ShowInkAnnotations 

End Sub 

 

 

################################################################### 

Date:         Fri, 19 Mar 2010 10:00:58 -0400 

Subject: Re: [CE-L] Uncheck Formatting info in Track Changes permanently 

To:           COPYEDITING-L@LISTSERV.INDIANA.EDU 

 

Erin is looking for a way to permanently stop Word 2003 from showing 

formatting comments. 

 

Interesting.  The setting I would think governs this does not seem to 

work. 

 

Go to Tools, Options, Security and uncheck Make hidden markup visible 

when opening or saving. 



 

It makes no difference. 

 

Of course you could use an AutoOpen macro that sets these things for you 

each time you open a doc. 

 

Here's a simple one: 

 

Sub AutoOpen 

 

   ActiveDocument.ActiveWindow.View.ShowFormatChanges = False 

 

End Sub 

 

-  Jessica 

 

Or you could use this macro occasionally to accept all the formatting 

changes and leave other changes in place.  The idea came from Hilary 

Powers, and I updated to use Word 2003 properties rather than WordBasic 

commands, and to restore your original settings rather than toggling 

everything back on.  Caveat:  I haven't tested this much, so you'd 

probably want to save the doc first.  Or try it out on a junk copy. 

 

Sub AcceptFormatChanges() 

 ' robustified by Jessica Weissman, based on ideas from Hilary Power and 

Keri Morgret 

   Dim bShowInk As Boolean, bShowFormat As Boolean, bShowInsDel As 

Boolean, bShowComments As Boolean 

 ' save current settings for the show stuff 

 

  bShowInk = ActiveDocument.ActiveWindow.View.ShowInkAnnotations 

  bShowFormat = ActiveDocument.ActiveWindow.View.ShowFormatChanges 

  bShowInsDel = 

ActiveDocument.ActiveWindow.View.ShowInsertionsAndDeletions 

  bShowComments = ActiveDocument.ActiveWindow.View.ShowComments 

 

 ' hide other stuff and show format changes 

    With ActiveDocument.ActiveWindow.View 

        .ShowFormatChanges = True 

        .ShowInkAnnotations = False 

        .ShowComments = False 

        .ShowInsertionsAndDeletions = False 

    End With 

' Approve formatting changes. 

     ActiveDocument.AcceptAllRevisionsShown 

 

' Restore original settings 

   With ActiveDocument.ActiveWindow.View 

    .ShowFormatChanges = bShowFormat 

    .ShowInkAnnotations = bShowInk 

    .ShowInsertionsAndDeletions = bShowInsDel 

    .ShowComments = bShowComments 

   End With 

 

* Obtain permission before forwarding. Pix: http://bit.ly/7fUx9O 

* Stuff: http://bit.ly/5PONhz FAQ: http://bit.ly/4ocsZ2 

* Sub: http://bit.ly/8dsD41 Community: http://bit.ly/80YUUd 



 

Date:         Fri, 19 Mar 2010 10:38:25 -0400 

Subject: Re: [CE-L] Uncheck Formatting info in Track Changes permanently 

To:           COPYEDITING-L@LISTSERV.INDIANA.EDU 

 

Somehow a line was cut from the macro in the original posting.  Here it 

is with the final line restored. 

 

-  Jessica, who did not see Hilary's response before posting mine 

 

Sub AcceptFormatChanges() 

 ' robustified and updated by Jessica Weissman, based on ideas from 

Hilary Powers and Keri Morgret 

   Dim bShowInk As Boolean, bShowFormat As Boolean, bShowInsDel As 

Boolean, bShowComments As Boolean 

 

' save current settings for the show stuff 

 

  bShowInk = ActiveDocument.ActiveWindow.View.ShowInkAnnotations 

  bShowFormat = ActiveDocument.ActiveWindow.View.ShowFormatChanges 

  bShowInsDel = 

ActiveDocument.ActiveWindow.View.ShowInsertionsAndDeletions 

  bShowComments = ActiveDocument.ActiveWindow.View.ShowComments 

 

 ' hide other stuff and show format changes 

 

    With ActiveDocument.ActiveWindow.View 

        .ShowFormatChanges = True 

        .ShowInkAnnotations = False 

        .ShowComments = False 

        .ShowInsertionsAndDeletions = False 

    End With 

 

' Approve formatting changes - they're the only revisions showing now 

     ActiveDocument.AcceptAllRevisionsShown 

 

' Restore original settings 

   With ActiveDocument.ActiveWindow.View 

    .ShowFormatChanges = bShowFormat 

    .ShowInkAnnotations = bShowInk 

    .ShowInsertionsAndDeletions = bShowInsDel 

    .ShowComments = bShowComments 

   End With 

End Sub 

 

* Obtain permission before forwarding. Pix: http://bit.ly/7fUx9O 

* Stuff: http://bit.ly/5PONhz FAQ: http://bit.ly/4ocsZ2 

* Sub: http://bit.ly/8dsD41 Community: http://bit.ly/80YUUd 

 

 

################################################################### 

Sub zzPosPub() 

 

funnyCode = "zzBlank" 

' used as the code to mean 'leave the Find/Replace box blank 

 

 



maxLines = 750 

' the maximum number of lines in your list 

 

ReDim findArray(maxLines), replaceArray(maxLines) As String 

ReDim findArray(maxLines), replaceArray(maxLines) As String 

ReDim hlArray(maxLines) As WdColorIndex 

ReDim styleArray(maxLines, 2) As String 

ReDim funct(maxLines, 16) As Boolean 

 

Dim myFile(20) As String 

 

Dim fText, rText, fStyle, rStyle, allLine, changeTo As String 

Dim startAtListFile, Fopposite, Ropposite As Boolean 

Dim fBold, rBold, fItalic, rItalic As Boolean 

Dim fSuper, rSuper, fSub, rSub, fUline, rUline, fSmall, rSmall As Boolean 

Dim mchWild, mchCase As Boolean, docs As Integer 

 

 

' Remember the existing highlight colour 

OldColour = Options.DefaultHighlightColorIndex 

' On Error GoTo ReportIt 

 

' ############################################### 

 ActiveWindow.View.Type = wdPrintView 

 

 ActiveWindow.ActivePane.View.Zoom.Percentage = 150 

 

 Selection.WholeStory 

 Selection.Style = ActiveDocument.Styles("Normal") 

 

 With ActiveDocument.Styles("Normal").ParagraphFormat 

   .SpaceAfter = 9 

 End With 

 

 

 Selection.WholeStory 

 With Selection.Font 

  .Name = "Times New Roman" 

  .Size = 13 

  .Bold = False 

  .Color = wdColorAutomatic 

  .Italic = False 

  .Underline = False 

 End With 

 

 Selection.WholeStory 

 Selection.LanguageID = wdEnglishUK 

 

 Application.ScreenUpdating = False 

 

 

 ' Selection.HomeKey Unit:=wdStory 

  theText = ActiveDocument.Name 

 docs = Word.Documents.Count 

 theList = "" 

For i = 1 To docs 

   thisFile = Documents(i).Name 



   If thisFile = "PosPublist.doc" Then 

      theList = "PosPublist.doc" 

      i = docs 

   End If 

Next 

If theList = "" Then 

   PreEditList = "C:\Program Files\VirtualAcorn\VirtualRPC-SA\HardDisc4\MyFiles\Positive\PosPublist.doc" 

   Documents.Open FileName:=PreEditList 

   theList = "PosPublist.doc" 

End If 

 

GoTo theStart 

 

 

' ############################################### 

 

 

 

' Remember which is the currently active file 

startFile = ActiveDocument.Name 

Set rng = ActiveDocument.Content 

rng.End = rng.Start + 50 

With rng.Find 

  .Text = "|" 

  .Execute 

End With 

 

' If you find a "|", the starting file is a list file 

startIsListFile = rng.Find.Found 

 

' How many Word files are loaded? 

docs = Word.Documents.Count 

If docs = 1 Then MyError = 10: GoTo myErrorReport 

 

' First, count how many of the files are F&R lists 

' and how many are texts to be worked on. 

 

NoOfLists = 0 

NoOfTexts = 0 

For i = 1 To docs 

   myFile(i) = Documents(i).Name 

   Documents(myFile(i)).Activate 

   Set rng = ActiveDocument.Content 

 

   ' Finding a '|' in the first 50 characters means it's a list 

   rng.End = rng.Start + 50 

   With rng.Find 

     .Text = "|" 

     .Execute 

   End With 

   If rng.Find.Found Then 

      NoOfLists = NoOfLists + 1 

      theList = myFile(i) 

   Else 

      NoOfTexts = NoOfTexts + 1 

      theText = myFile(i) 

   End If 



Next i 

 

If NoOfLists > 1 And NoOfTexts = 1 And Not startIsListFile _ 

   Then MyError = 8: GoTo myErrorReport 

If NoOfLists = 1 And NoOfTexts > 1 And startIsListFile _ 

   Then MyError = 7: GoTo myErrorReport 

If NoOfLists > 1 And NoOfTexts > 1 Then MyError = 9: _ 

   GoTo myErrorReport 

 

theStart: 

' At this point, theList holds the name of the F&R list 

' and theText is the file to work on. 

 

Documents(theList).Activate 

 

' Check that last line is blank, and add CrLf if not 

'lastPara = ActiveDocument.Paragraphs.Count 

'Set rng = ActiveDocument.Paragraphs(lastPara).Range 

'Ftext = rng 

'If Len(Ftext) > 1 Then rng.InsertAfter vbCr 

'???????????????????????????????????????????????????????????????????????? 

 

 

' Create the list of F&Rs 

FRitem = 0: hilight = 1: Ignore = False 

' FRitem is used to count the actual lines that are F&R commands 

 

lastLine = ActiveDocument.Paragraphs.Count 

For i = 1 To lastLine 

 ' Look through the list for things that aren't actual F&Rs 

   Do 

      Do 

         Set rng = ActiveDocument.Paragraphs(i).Range 

         rng.End = rng.End - 1 

         allLine = rng 

         i = i + 1 

       ' Keep going until you find a non-blank line 

      Loop Until Len(allLine) > 0 Or i > lastLine 

    ' Check if it's a comment line, i.e. starting with a pad 

      firstChar = Left(allLine, 1) 

      If firstChar = "|" Then 

         If InStr(allLine, "light") > 0 Then 

          ' Check for | Highlight command 

            Select Case LCase(Right(allLine, 3)) 

               Case "= 0": hilight = 0 

               Case "= 1": hilight = 1 

               Case " no": hilight = 0 

               Case "yes": hilight = 1 

               Case Else 

               MyError = 3: GoTo myErrorReport 

            End Select 

         End If 

         If InStr(allLine, "nore") > 0 Then 

          ' Check for | Ignore command 

            Select Case LCase(Right(allLine, 3)) 

               Case "yes": Ignore = True 

               Case " no": Ignore = False 



               Case Else: MyError = 4: GoTo myErrorReport 

            End Select 

         End If 

      End If 

   Loop Until firstChar <> "|" Or i >= lastLine 

   i = i - 1 

 

 ' If you find hashes, stop looking for F&R lines 

   If Left(allLine, 2) = "##" Then i = lastLine + 1 

 

 ' It's an F&R line, so check for highlighting 

   If i <= lastLine And Len(allLine) > 1 Then 

      lineStart = rng.Start 

      lineEnd = rng.End 

 

      rng.End = lineStart + 1 

      hilightColour = rng.HighlightColorIndex * hilight 

      rng.End = lineEnd 

 

      If hilightColour > 7 Then MyError = 1: GoTo myErrorReport 

 

    ' Has it got a pad character in it? 

      padPosition = InStr(allLine, "|") 

    ' If not, it's a two-line F&R 

      If padPosition = 0 Then 

       ' We've got two lines 

         fText = rng 

       ' What style is the Find in? 

         fStyle = rng.Style 

         If fStyle = "Normal" Then fStyle = "" 

 

         rng.End = lineStart + 1 

       ' Check format & type colour of first char of Find 

         Fopposite = (rng.Font.Color = wdColorAutomatic) 

         fItalic = rng.Italic 

         fBold = rng.Bold 

         fSuper = rng.Font.Superscript 

         fSub = rng.Font.Subscript 

         fUline = rng.Underline 

         fSmall = rng.Font.SmallCaps 

 

         i = i + 1 

         Set rng = ActiveDocument.Paragraphs(i).Range 

         rng.End = rng.End - 1 

         lineEnd = rng.End 

         rText = rng 

         If InStr(rText, "|") > 0 Then MyError = 2: GoTo myErrorReport 

       ' What style is the Replace in? 

         rStyle = rng.Style 

         If rStyle = "Normal" Then rStyle = "" 

         rng.Start = lineEnd - 1 

 

       ' Check format & type colour of last char of Find 

         Ropposite = (rng.Font.Color = wdColorAutomatic) 

         rItalic = rng.Italic 

         rBold = rng.Bold 

         rSuper = rng.Font.Superscript 



         rSub = rng.Font.Subscript 

         rUline = rng.Underline 

         rSmall = rng.Font.SmallCaps 

 

      Else 

       ' It's all on one line, so no style info 

         fStyle = "" 

         rStyle = "" 

       ' Chop up the line into F and R 

         fText = Left(allLine, padPosition - 1) 

         rText = Right(allLine, Len(allLine) - padPosition) 

 

         rng.End = lineStart + 1 

       ' Check format & type colour of first char of Find 

         Fopposite = (rng.Font.Color = wdColorAutomatic) 

         fItalic = rng.Italic 

         fBold = rng.Bold 

         fSuper = rng.Font.Superscript 

         fSub = rng.Font.Subscript 

         fUline = rng.Underline 

         fSmall = rng.Font.SmallCaps 

 

         rng.End = lineEnd 

         rng.Start = lineEnd - 1 

       ' Check format & type colour of last char of Find 

         Ropposite = (rng.Font.Color = wdColorAutomatic) 

         rItalic = rng.Italic 

         rBold = rng.Bold 

         rSuper = rng.Font.Superscript 

         rSub = rng.Font.Subscript 

         rUline = rng.Underline 

         rSmall = rng.Font.SmallCaps 

      End If 

    ' Clip off MatchCase and Wildcard indicators 

        mchWild = False 

        mchCase = True 

      If Left(fText, 1) = "¬" Then 

        fText = Right(fText, Len(fText) - 1) 

        mchCase = False 

      End If 

      If Left(fText, 1) = "~" Then 

        fText = Right(fText, Len(fText) - 1) 

        mchWild = True 

      End If 

      If Left(fText, 1) = "¬" Then 

        fText = Right(fText, Len(fText) - 1) 

        mchCase = False 

      End If 

      FRitem = FRitem + 1 

    ' Save all the F&R info in arrays 

      findArray(FRitem) = fText 

      replaceArray(FRitem) = rText 

      styleArray(FRitem, 1) = fStyle 

      styleArray(FRitem, 2) = rStyle 

      hlArray(FRitem) = hilightColour 

      funct(FRitem, 1) = mchWild 

      funct(FRitem, 2) = mchCase 



      funct(FRitem, 3) = fBold 

      funct(FRitem, 4) = rBold 

      funct(FRitem, 5) = fItalic 

      funct(FRitem, 6) = rItalic 

      funct(FRitem, 7) = fSuper 

      funct(FRitem, 8) = rSuper 

      funct(FRitem, 9) = fSub 

      funct(FRitem, 10) = rSub 

      funct(FRitem, 11) = fUline 

      funct(FRitem, 12) = rUline 

      funct(FRitem, 13) = fSmall 

      funct(FRitem, 14) = rSmall 

      funct(FRitem, 15) = Fopposite 

      funct(FRitem, 16) = Ropposite 

    ' ^p is not allowed in wildcard searches! 

      If mchWild And InStr(fText, "^" & "p") > 0 _ 

         Then MyError = 5: GoTo myErrorReport 

    ' You can't do case insensitive AND wildcard 

      If mchWild And mchCase = False Then _ 

         MyError = 6: GoTo myErrorReport 

   End If 

Next i 

 

lastItem = FRitem 

 

'################################ 

' ActiveDocument.Close 

'################################ 

 

Windows(theText).Activate 

colourOffset = 7 

 

Application.ScreenUpdating = True 

 

 

 

' Get the data out of the arrays 

For FRitem = 1 To lastItem 

   fText = findArray(FRitem) 

   rText = replaceArray(FRitem) 

   fStyle = styleArray(FRitem, 1) 

   rStyle = styleArray(FRitem, 2) 

   hilightColour = hlArray(FRitem) 

   mchWild = funct(FRitem, 1) 

   mchCase = funct(FRitem, 2) 

   fBold = funct(FRitem, 3) 

   rBold = funct(FRitem, 4) 

   fItalic = funct(FRitem, 5) 

   rItalic = funct(FRitem, 6) 

   fSuper = funct(FRitem, 7) 

   rSuper = funct(FRitem, 8) 

   fSub = funct(FRitem, 9) 

   rSub = funct(FRitem, 10) 

   fUline = funct(FRitem, 11) 

   rUline = funct(FRitem, 12) 

   fSmall = funct(FRitem, 13) 

   rSmall = funct(FRitem, 14) 



   Fopposite = funct(FRitem, 15) 

   Ropposite = funct(FRitem, 16) 

 

 ' funnyCode means Ftext is to be blank 

   If fText = funnyCode Then fText = "" 

 ' A blank in the R text? 

   If Left(rText, Len(funnyCode)) = funnyCode Then 

    ' If so, are there any ChangeTo words? 

      changeTo = Right(rText, Len(rText) - Len(funnyCode)) 

      rText = "" 

   End If 

 

   Set rng = ActiveDocument.Content 

 

 ' Do the F&R with the appropriate conditions set 

   With rng.Find 

     .ClearFormatting 

     .Text = fText 

     If fBold Then .Font.Bold = Fopposite 

     If fItalic Then .Font.Italic = Fopposite 

     If fSuper Then .Font.Superscript = Fopposite 

     If fSub Then .Font.Subscript = Fopposite 

     If fUline Then .Font.Underline = Fopposite 

     If fSmall Then .Font.SmallCaps = fSmall 

     If fStyle > "" Then .Style = fStyle 

     If Ignore = True Then .Highlight = False 

     With .Replacement 

        .ClearFormatting 

        .Text = rText 

        If rBold Then .Font.Bold = Ropposite 

        If rItalic Then .Font.Italic = Ropposite 

        If rSuper Then .Font.Superscript = Ropposite 

        If rSub Then .Font.Subscript = Ropposite 

        If rUline Then .Font.Underline = Ropposite 

        If rSmall Then .Font.SmallCaps = rSmall 

        If rStyle > "" Then .Style = rStyle 

        If hilightColour > 0 And rText > "" Then 

           .Font.Color = hilightColour + colourOffset 

        End If 

        If InStr(changeTo, "bold") Then .Font.Bold = True 

        If InStr(changeTo, "italic") Then .Font.Italic = True 

        If InStr(changeTo, "super") Then .Font.Superscript = True 

        If InStr(changeTo, "sub") Then .Font.Subscript = True 

        If InStr(changeTo, "under") Then .Font.Underline = True 

     End With 

     .MatchWildcards = mchWild 

     .MatchCase = mchCase 

     .Execute Replace:=wdReplaceAll 

   End With 

Next 

 

' In the F&Rs above, a highlight was signalled 

' by using an obscure font colour unlikely to be 

' used in the text, so now we convert each font 

' colour back to a highlight colour. 

 

If hilight = 1 Then 



  For HLcolour = 2 To 7 

    Options.DefaultHighlightColorIndex = HLcolour 

 

    Set rng = ActiveDocument.Content 

    With rng.Find 

      .ClearFormatting 

      .Font.Color = HLcolour + colourOffset 

      .Replacement.ClearFormatting 

      .Replacement.Font.Color = wdColorAutomatic 

      .Replacement.Highlight = True 

      .Text = "" 

      .Replacement.Text = "" 

      .Execute Replace:=wdReplaceAll 

    End With 

   Next 

End If 

 

'########################################## 

 Selection.EndKey Unit:=wdStory 

 Selection.TypeParagraph 

 Selection.TypeParagraph 

 Selection.TypeText Text:="Auto-edited by P Beverley, " 

 Selection.InsertDateTime DateTimeFormat:="dd MMMM yyyy.", InsertAsField:=False 

 Selection.TypeParagraph 

 

 Selection.HomeKey Unit:=wdStory 

 

'########################################## 

 

FinishHere: 

' Restore highlight colour to normal 

Options.DefaultHighlightColorIndex = OldColour 

Exit Sub 

 

' Warn the user about problems that the macro has detected 

myErrorReport: 

If MyError <= 6 Then rng.Select 

Selection.HomeKey Unit:=wdLine 

Select Case MyError 

   Case 1: myPrompt = "Is the whole line highlighted?" 

   Case 2: myPrompt = "No matching replace text" 

   Case 3: myPrompt = "A |Highlight line should say 'yes' or 'no'." 

   Case 4: myPrompt = "An |Ignore line should say 'yes' or 'no'" 

   Case 5: myPrompt = "Sorry, Word can't use ^p in a wildcard search." _ 

      & vbCrLf & vbCrLf & "On Word for Mac, try [^13]." & vbCrLf & _ 

      vbCrLf & "On Word for Windows, try ^13." 

   Case 6: myPrompt = "Sorry, Word can't do case insensitive searches with wildcards." 

   Case 7: myPrompt = "Too many files." & vbCrLf & vbCrLf & _ 

      "Please switch to the text file and rerun the macro." 

   Case 8: myPrompt = "Too many files." & vbCrLf & vbCrLf & _ 

      "Please switch to the F&R list file and rerun the macro." 

   Case 9: myPrompt = "Too many open files." & vbCr & vbCr & _ 

      "Please close unused files and rerun the macro." 

   Case 10: myPrompt = "Please create or load an F&R list." 

   Case Else: myPrompt = "Progam error; please inform Paul Bev." 

End Select 

MsgBox myPrompt, vbOKOnly + vbExclamation, "FRedit" 



Exit Sub 

 

' Errors that Word generates end up here 

ReportIt: 

' If we've found the F&R list, select it 

If theList > "" Then 

   Documents(theList).Activate 

   Set rng = ActiveDocument.Range 

 

 ' and look for the current line in the F&R list 

 ' which is probably where the problem lies. 

   Selection.HomeKey Unit:=wdStory 

   With Selection.Find 

      .ClearFormatting 

      .Text = fText & "|" & rText 

      .Forward = True 

      .MatchWildcards = False 

      .Execute 

   End With 

 

 ' If we couldn't find it, maybe it's a two-line F&R 

   If Not Selection.Find.Found Then 

      With Selection.Find 

         .ClearFormatting 

         .Text = fText & vbCrLf & rText 

         .Forward = True 

         .MatchWildcards = False 

         .Execute 

      End With 

   End If 

End If 

Selection.HomeKey Unit:=wdLine 

 

' Display Word's error message 

MsgBox Err.Description, vbExclamation, "Error from Word" 

Resume FinishHere 

 

 

End Sub 

 

##################################################### 

Sub EndnoteDeleteDoubleSpace() 

  For i = 1 To ActiveDocument.Endnotes.Count 

    Set rng = ActiveDocument.Endnotes(i).Range 

    rng.Start = rng.Start - 1 

    rng.End = rng.Start + 1 

    mychar = rng 

    myASC = 0 

    If Len(mychar) > 0 And i > 1 Then myASC = Asc(mychar) 

    If myASC = 13 Or myASC = 11 Then rng.Delete 

 

    Set rng = ActiveDocument.Endnotes(i).Range 

    rng.Start = rng.End - 1 

    KeepGoing = True 

    Do 

      mychar = rng 

      If Len(mychar) > 0 Then 



        myASC = Asc(mychar) 

      Else 

        myASC = 0 

      End If 

      If myASC = 13 Or myASC = 11 Or myASC = 32 Then 

        rng.Delete 

        rng.Start = rng.Start - 1 

      Else 

        KeepGoing = False 

      End If 

    Loop Until KeepGoing = False 

  Next 

End Sub 

 

##################################################### 

ScreenUpdating 1/0 

Screenrefresh 

 

You can convert footnotes to endnotes and viceversa: 

 

Insert -> Footnotes -> Options 

Page 354 says: 

 

"Make sure you're in Normal view" 

 

"You can convert endnotes to footnotes or vice versa by clicking the 

Insert menu and then clicking ”Footnote,• ”Options,• and ”Convert.•" 

 

but I can't get it to work. 

 

##################################################### 

FindThis macros done with rng, not Selection: 

 

Sub FindThisFwdOO() 

' 17.02.10 

' <Shift-Ctrl-Alt-Down> 

If Selection.Start = Selection.End Then MsgBox ("Select text"): Exit Sub 

thisBit = Selection 

If Asc(thisBit) <> 32 Then thisBit = Trim(Selection) 

Set rng = ActiveDocument.Range 

rng.Start = Selection.End 

With rng.Find 

  .Wrap = False 

  .Text = thisBit 

  .MatchCase = False 

  .Forward = True 

  .Execute 

End With 

rng.Select 

'Add the find item to the F&R dialogue 

Selection.Find.Text = thisBit 

End Sub 

 

Sub FindThisBackOO() 

' 17.02.10 

' <Shift-Ctrl-Alt-Up> 

If Selection.Start = Selection.End Then MsgBox ("Select text"): Exit Sub 



thisBit = Selection 

If Asc(thisBit) <> 32 Then thisBit = Trim(Selection) 

Set rng = ActiveDocument.Range 

rng.Start = Selection.End 

With rng.Find 

  .Wrap = False 

  .Text = thisBit 

  .MatchCase = False 

  .Forward = False 

  .Execute 

End With 

rng.Select 

'Add the find item to the F&R dialogue 

Selection.Find.Text = thisBit 

End Sub 

 

 

Sub FindThisFwdMarkOO() 

' 17.02.10 

' <Ctrl-Alt-Shift-Num-Plus> 

If Selection.Start = Selection.End Then MsgBox ("Select text"): Exit Sub 

thisBit = Selection 

If Asc(thisBit) <> 32 Then thisBit = Trim(Selection) 

Selection.Start = Selection.End 

Selection.TypeText ("[[[") 

Set rng = ActiveDocument.Range 

rng.Start = Selection.End 

With rng.Find 

  .Wrap = False 

  .Text = thisBit 

  .MatchCase = False 

  .Forward = True 

  .Execute 

End With 

rng.Select 

'Add the find item to the F&R dialogue 

Selection.Find.Text = thisBit 

 

End Sub 

 

Sub FindThisBackMarkOO() 

' 17.02.10 

' <Ctrl-Alt-Shift-Num-Plus> 

If Selection.Start = Selection.End Then MsgBox ("Select text"): Exit Sub 

thisBit = Selection 

If Asc(thisBit) <> 32 Then thisBit = Trim(Selection) 

Selection.Start = Selection.End 

Selection.TypeText ("[[[") 

Set rng = ActiveDocument.Range 

rng.Start = Selection.End 

With rng.Find 

  .Wrap = False 

  .Text = thisBit 

  .MatchCase = False 

  .Forward = False 

  .Execute 

End With 



rng.Select 

'Add the find item to the F&R dialogue 

Selection.Find.Text = thisBit 

End Sub 

 

 

 

 

 

 

##################################################### 

 

Find Count with and without trimming 

 

 

Sub FindCount() 

' 08.02.10 

' <Alt-?> 

If Selection.Start = Selection.End Then 

  MsgBox ("Select some text") 

  Exit Sub 

End If 

 

thisBit = Selection 

 

Set rng = ActiveDocument.Range 

thisMany = -1 

Do 

  With rng.Find 

    .ClearFormatting 

    .Replacement.ClearFormatting 

    .MatchCase = False 

    .Text = thisBit 

    .Replacement.Text = "" 

    .Execute 

  End With 

  thisMany = thisMany + 1 

Loop Until rng.Find.Found = False 

 

' If selected text contained spaces, make that clear ... 

showThis = Replace(thisBit, " ", "_") & " – " & thisMany 

 

Set rng = ActiveDocument.Range 

thisMany = -1 

Do 

  With rng.Find 

    .ClearFormatting 

    .Replacement.ClearFormatting 

    .Text = thisBit 

    .MatchCase = True 

    .Replacement.Text = "" 

    .Execute 

  End With 

  thisMany = thisMany + 1 

Loop Until rng.Find.Found = False 

 

' If selected text contained spaces, make that clear ... 



showThis = showThis & "  (" & thisMany & ")   " 

 

'... and count without any outer spaces 

If thisBit <> Trim(thisBit) Then 

  thisBit = Trim(thisBit) 

 

  Set rng = ActiveDocument.Range 

  thisMany = -1 

  Do 

    With rng.Find 

      .ClearFormatting 

      .Replacement.ClearFormatting 

      .Text = thisBit 

      .MatchCase = False 

      .Replacement.Text = "" 

      .Execute 

    End With 

    thisMany = thisMany + 1 

  Loop Until rng.Find.Found = False 

  showThis = showThis & "        " & thisBit & " – " & thisMany 

 

  Set rng = ActiveDocument.Range 

  thisMany = -1 

  Do 

    With rng.Find 

      .ClearFormatting 

      .Replacement.ClearFormatting 

      .MatchCase = True 

      .Text = thisBit 

      .Replacement.Text = "" 

      .Execute 

    End With 

    thisMany = thisMany + 1 

  Loop Until rng.Find.Found = False 

  showThis = showThis & "  (" & thisMany & ")   " 

End If 

 

MsgBox showThis & showThisCase 

End Sub 

 

##################################################### 

 

Changing things pargraph by paragraph 

 

Sub JustifyOFF() 

For Each myPara In ActiveDocument.Paragraphs 

 If myPara.Range.ParagraphFormat.Alignment = wdAlignParagraphJustify Then 

   myPara.Range.ParagraphFormat.Alignment = wdAlignParagraphLeft 

 End If 

Next 

End Sub 

 

 

 

##################################################### 

Sub Macro1() 

' Was used for indexing 



' 

If Left(ActiveDocument.Name, 5) = "Index" Then 

  Selection.MoveDown Unit:=wdLine, Count:=1 

  Selection.EndKey Unit:=wdLine 

  Windows("FReditList2").Activate 

     Selection.MoveDown Unit:=wdParagraph, Count:=2 

     Selection.MoveUp Unit:=wdParagraph, Count:=1, Extend:=wdExtend 

  hhh = Selection 

  hhh = Left(hhh, Len(hhh) - 1) 

  Windows("TextAll").Activate 

  Selection.HomeKey Unit:=wdStory 

  Selection.Find.ClearFormatting 

  With Selection.Find 

    .Text = hhh 

    .Replacement.Text = "" 

    .Forward = True 

    .Wrap = wdFindContinue 

    .Format = False 

    .MatchCase = False 

    .MatchWholeWord = False 

    .MatchWildcards = False 

    .MatchSoundsLike = False 

    .MatchAllWordForms = False 

  End With 

  Selection.Find.Execute 

Else 

  Windows("Index_Edited_01").Activate 

End If 

End Sub 

 

 

###################################################### 

Numbering the paragraphs 

 

Sub NumberParas() 

For p = 1 To ActiveDocument.Paragraphs.Count 

  ActiveDocument.Paragraphs(p).Range.Select 

  Selection.MoveLeft Unit:=wdCharacter 

  Selection.TypeText Text:=LTrim(Str(p)) & ") " 

Next p 

End Sub 

 

 

##################################################### 

 

 

Macro to create ASCII code sheet 

 

Sub test() 

mySkip = 45 

For i = 33 To 32 + mySkip 

  fText = Str(i) & vbTab & Chr(i) & vbTab 

  fText = fText & Str(i + mySkip) & vbTab & Chr(i + mySkip) & vbTab 

  fText = fText & Str(i + 2 * mySkip) & vbTab & Chr(i + 2 * mySkip) & vbTab 

  fText = fText & Str(i + 3 * mySkip) & vbTab & Chr(i + 3 * mySkip) & vbTab 

  lastSkip = i + 4 * mySkip 

  If lastSkip < 256 Then 



    fText = fText & Str(lastSkip) & vbTab & Chr(lastSkip) & vbTab 

  End If 

  fText = fText & vbCrLf 

  Selection.InsertAfter fText 

Next i 

 

End Sub 

 

##################################################### 

 

 

Sue Peter's macro to tag A, B, C and D headings 

 

For i = 1 To ActiveDocument.Paragraphs.Count 

  Set rng = ActiveDocument.Paragraphs(i).Range 

  rng.End = rng.End - 1 

  myCode = Left(rng.Style, 1) 

  mySecond = Mid(rng.Style, 2, 1) 

  If Asc(myCode) > 64 And Asc(myCode) < 69 And mySecond = "" Then 

    rng.InsertAfter "</" & myCode & "hd>" 

    rng.InsertBefore "<" & myCode & "hd>" 

  End If 

Next 

 

####################################### 

 

Centres the chapter heads 

 

Sub ChapterHeads() 

Do 

  With Selection.Find 

    .ClearFormatting 

    .Replacement.ClearFormatting 

    .Text = "<+CH>" 

    .Replacement.Text = "" 

    .Forward = True 

    .Wrap = False 

    .MatchWildcards = False 

    .Execute 

  End With 

  If Selection.Find.Found = True Then 

    GoGo = True 

    Selection.ParagraphFormat.Alignment = wdAlignParagraphCenter 

  Else 

    GoGo = False 

  End If 

Loop Until GoGo = False 

 

End Sub 

 

############################################# 

 

  DocName = ActiveDocument.FullName 

  NewDocName = Replace(DocName, ".doc", "_COM.doc") 

 

  If ActiveDocument.Comments.Count >= 1 Then 

    ActiveDocument.StoryRanges(wdCommentsStory).Copy 



  End If 

 

  Documents.Add 

  Selection.Paste 

  ActiveDocument.SaveAs FileName:=NewDocName 

End Sub 

 

 

 

 

theList = "" 

Set rng = ActiveDocument.Content 

totWords = rng.Words.Count 

myPrompt = "Press <Ctrl-Break> to stop.    Words to go: " 

StatusBar = myPrompt & totWords 

For wrd = 1 To totWords 

  thisWord = rng.Words(wrd) 

  If Len(thisWord) < 2 Then GoTo nextWord 

 

  thisWord = Trim(thisWord) 

  If Asc(thisWord) > 90 Then GoTo nextWord 

 

  part = Right(thisWord, Len(thisWord) - 1) 

  If LCase(part) = part Then 

    StatusBar = myPrompt & totWords - wrd 

    GoTo nextWord 

  End If 

  If InStr(theList, thisWord) > 0 Then GoTo nextWord 

 

' Then and only then add it to the list 

  theList = theList & thisWord & vbCrLf 

nextWord: 

Next wrd 

Documents.Add 

Selection.InsertAfter Text:=theList 

Selection.WholeStory 

Selection.Sort 

Selection.HomeKey Unit:=wdStory 

Selection.Delete 

 

 

Fiddle with different styles, adding indent to the paragraph 

style following (or not): 

 

Sub Harvey() 

  StyleList = "Heading 1, Heading 2, Heading 3, and any more you want" 

  NoIndentStyle = "Body Text" 

  IndentStyle = "Body Text First Indent" 

 

  For i = 1 To (ActiveDocument.Paragraphs.Count - 1) 

    StyleNow = ActiveDocument.Paragraphs(i).Range.Style 

    StyleNext = ActiveDocument.Paragraphs(i + 1).Range.Style 

 

    If InStr(StyleList, StyleNow) And StyleNext = IndentStyle Then 

      ActiveDocument.Paragraphs(i + 1).Range.Style = NoIndentStyle 

    End If 

  Next 



 

 

End Sub 

 

 

 

Select a paragraph: 

 

Selection.MoveUp Unit:=wdParagraph, Count:=1 

Selection.MoveDown Unit:=wdParagraph, Count:=1, Extend:=wdExtend 

 

 

More needs to be transferred into this file and then the 

source file put into zzBits. 

 

 

============================================ 

Sub FindAdverbs() 

Dim i As Integer 

Dim CurrentString As String 

For i = 1 To ActiveDocument.Words.Count 

CurrentString = Trim(ActiveDocument.Words(i).Text) 

If Right(CurrentString, 2) = "ly" Then 

With ActiveDocument.Words(i) 

.Italic = Not .Italic 

.Bold = Not .Bold 

End With 

End If 

Next i 

End Sub 

This 

 

============================================ 

 

 

============================================ 

Sub Exclude() 

Dim sAddWords As String 

sAddWord = Trim(Selection.Text) 

ChangeFileOpenDirectory _ 

"C:\Program Files\Common Files\Microsoft Shared\Proof\" 

' The file name in the next line should be changed so it 

Click Here for More Tips Collections: http://store.VitalNews.com Page 237 WordTips: The Macros Working With 

Word‘s Tools 

' reflects the proper exclude file name for your system 

Documents.Open FileName:="mssp2_en.exc", _ 

ConfirmConversions:=False, ReadOnly:=False, _ 

AddToRecentFiles:=False, PasswordDocument:="", _ 

PasswordTemplate:="", Revert:=False, _ 

WritePasswordDocument:="", WritePasswordTemplate:="", _ 

Format:=wdOpenFormatAuto 

Selection.TypeText Text:=sAddWord 

Selection.TypeParagraph 

ActiveDocument.Close SaveChanges:=wdSaveChanges, _ 

OriginalFormat:=wdOriginalDocumentFormat 

 

 



============================================ 

 

This first macro is mine - it finds the directory of the currently 

active document. 

 

Sub Test() 

myFullFileName = ActiveDocument.FullName 

myFileName = ActiveDocument.Name 

If myFullFileName = myFileName Then 

  MsgBox ("File not yet saved.") 

Else 

' This returns the filepath of the directory containing 

' the active document 

  myDirName = Left(myFullFileName, InStr(myFullFileName, myFileName) - 2) 

  MsgBox myDirName 

End If 

End Sub 

 

 

 

From: http://www.word.mvps.org/FAQs/MacrosVBA/ModifyRecordedMacro.htm 

 

Suppose you record a macro that opens a document and 

then does something to it, such as changing the view. The 

beginning of the macro may look like this: 1 

 

Sub Macro2() 

  Documents.Open FileName:= "Lorem.doc" , _ 

      ConfirmConversions:= False , _ 

      ReadOnly:= False , AddToRecentFiles:= False , _ 

      PasswordDocument:= "" , PasswordTemplate:= "" , _ 

      Revert:= False , WritePasswordDocument:= "" , _ 

      WritePasswordTemplate:= "" , _ 

      Format:=wdOpenFormatAuto, XMLTransform:= "" 

  ' more code, for example ... 

  ActiveWindow.View = wdPrintView 

End Sub 

 

  

 

The recorded macro for opening a document, like the 

recording of the Format > Font dialog, contains unneeded 

things. In this case, they are parameters that contain 

information about the file, such as a password. The only 

parameter that's necessary is the FileName. You can remove 

the other parameters from the command, and Word will use 

its default values for them. 

 

A more important problem is that every time you run the 

recorded macro, it will open the same document. This may 

be what you intend, but more likely you want the macro to 

let you choose which document to open. 

 

One way to get the file's name into the macro is to display an 

input box, where you can type it in. The InputBox function 

shows a message box with a text entry field, and its result is 

the name that you type into the field. 



 

Sub Macro2A() 

  Dim MyFileName As String 

  MyFileName = InputBox( "Enter file name to open:" , _ 

      "Open a Document" ) 

  If MyFileName <> "" Then 

    Documents.Open FileName:=MyFileName 

    ' more code, for example ... 

    ActiveWindow.View = wdPrintView 

  End If 

End Sub 

 

 But this isn't very friendly. There's a good chance of making 

a typing mistake. And if the document isn't in the currently 

active folder, you have to type the entire path to it. A better 

idea is to use the File > Open dialog that's already built into 

Word, which lets you browse to and select the proper 

document. When you click the OK button in the dialog, 

Word opens the selected document. The macro is simpler, 

too, because it doesn't need a separate Documents.Open 

statement&8212;the dialog handles it all for you. 

 

Sub Macro2B() 

  If Dialogs(wdDialogFileOpen).Show = - 1 Then 

    ' more code, for example ... 

    ActiveWindow.View = wdPrintView 

  End If 

End Sub 

 

  

 

The word "Dialogs" in this code refers to a list of all of 

Word's built-in dialogs. Each dialog has a name that starts 

with "wdDialog". In this case, wdDialogFileOpen is the name 

of the built-in File > Open dialog, and the expression 

"Dialogs(wdDialogFileOpen)" selects that particular dialog 

from the list. To see all of the possible names, press F2 in 

the VBA editor to display the Object Browser, type 

wdDialog into the search box, and press Enter. 

 

The word ".Show" refers to a method of the dialog. A 

method is an action that can be done&8212;the .Show 

method causes the dialog to appear and execute (carry out 

its function). 

 

Many methods also have a value after they execute, which 

tells the macro something about what just happened (this is 

called "returning" the value). In this case, if you click the OK 

button in the dialog then the .Show method returns the value 

&8211;1, but if you click the Cancel button or the X in the 

title bar then .Show returns the value 0. The VBA help topic 

for each method tells you what values that method can 

return and what they mean. You can use the returned value 

in an If statement, as in Macro2B, to decide what to do. 

 

Similar changes to recorded code let you make macros that 

save files to variable locations, search for variable strings, and 



many other unrecordable variations. You can find out more 

at Getting help with calling Word's built-in dialogs using 

VBA. 

 

 

 

 

 

 

  

 

 

 

 

============================================ 

SEARCHING FOR NON-BLACK TEXT 

When searching for text in a document, it is easy to search for formats such as “bold” or “italic.” You can also 

search for “not bold” and “not italic.” You can search for text of a specific color, but Word does not allow you to 

search for text other than a specific color. For instance, you cannot search for text that is “not black.” 

If you need to search for text that is not black, then the best way to do so is with a macro. Consider the following 

macro, which prompts you for your search text, and then looks for the first non-black instance of that text. 

Sub FindNotBlack() 

  With Selection.Find 

  .ClearFormatting 

  .Text = InputBox(prompt:="Enter the search text.", _ 

  Title:="Find Nonblack Text") 

  Do While .Execute 

  With Selection.Font 

  If (.Color <> wdColorAutomatic) And _ 

  (.Color <> wdColorBlack) Then 

  MsgBox "Found" 

  Exit Sub 

  End If 

  End With 

  Loop 

  End With 

End Sub 

 

Note that the macro checks to see if the color of the matched text is different from black (wdColorBlack) and from 

the automatic color (wdColorAutomatic). This is because the automatic color is black on most systems. 

 

============================================ 

FINDING TEXT BOXES 

Word has a powerful search and replace capability that lets you search for virtually anything in your document. 

Word even includes codes you can use to search for special items. (Click the Special button in the Find and 

Replace dialog to see what codes are available.) One thing you cannot search for, however, is text boxes. There is 

no special code that allows you find text boxes. 

You can, however, use a macro to look through a document and stop when it finds a text box. The following macro 

stops on each text box it finds and asks the user if that is the text box wanted. 

Sub SearchTextBox() 

Dim shp As Shape 

Dim sTemp As String 

Dim iAnswer As Integer 

For Each shp In ActiveDocument.Shapes 

If shp.Type = msoTextBox Then 

shp.Select 

Selection.ShapeRange.TextFrame.TextRange.Select 



sTemp = Selection.Text 

sTemp = Left(sTemp,20) 

iAnswer = MsgBox("Box contains text beginning with:" & vbCrLf _ 

& sTemp & vbCrLf & "Stop here?", vbYesNo, "Located Text Box") 

If iAnswer = vbYes Then Exit For 

End If 

Next 

End Sub 

 

============================================ 

Sub Test() 

Dim v As Variable 

varExists = False 

For Each v In ActiveDocument.Variables 

  If v.Name = "tColour" Then varExists = True: Exit For 

Next v 

 

If varExists = False Then ActiveDocument.Variables.Add "tColour", 7 

 

searchColour = ActiveDocument.Variables("tColour") 

 

' If no text is selected, search for next highlight 

If Selection.Start = Selection.End Then GoTo FindNext 

 

' If some text is selected, see what colour it is; 

' then go find more text of that colour. 

selColour = Selection.Font.Color 

searchColour = selColour 

ActiveDocument.Variables("tColour") = searchColour 

 

FindNext: 

Selection.Start = Selection.End 

HlightFound = False 

With Selection.Find 

 .ClearFormatting 

 .Replacement.ClearFormatting 

 .Text = "" 

 .Font.Color = searchColour 

 .Wrap = wdFindContinue 

 .Replacement.Text = "" 

 .Forward = True 

 .MatchWildcards = False 

 .Execute 

End With 

 

End Sub 

 

Sub FindHighlight() 

Dim v As Variable 

varExists = False 

For Each v In ActiveDocument.Variables 

  If v.Name = "hColour" Then varExists = True: Exit For 

Next v 

 

If varExists = False Then ActiveDocument.Variables.Add "hColour", 7 

 

searchColour = ActiveDocument.Variables("hColour") 



 

' If no text is selected, search for next highlight 

If Selection.Start = Selection.End Then GoTo FindNext 

 

' If some text is selected, see what colour it is; 

' then go find more text of that colour. 

selColour = Selection.Range.HighlightColorIndex 

If selColour > 0 Then 

  searchColour = selColour 

  ActiveDocument.Variables("hColour") = searchColour 

  GoTo FindNext 

End If 

Selection.Start = Selection.End 

 

Do 

  With Selection.Find 

   .ClearFormatting 

   .Replacement.ClearFormatting 

   .Text = "" 

   .Highlight = True 

   .Wrap = wdFindContinue 

   .Replacement.Text = "" 

   .Forward = True 

   .MatchWildcards = False 

   .Execute 

  End With 

 

  myResponse = MsgBox("This colour?", vbQuestion + vbYesNoCancel) 

  If myResponse = vbCancel Then Exit Sub 

  If Selection.Find.Found = False Then Exit Sub 

Loop Until myResponse = vbYes 

searchColour = Selection.Range.HighlightColorIndex 

ActiveDocument.Variables("hColour") = searchColour 

 

FindNext: 

Selection.Start = Selection.End 

HlightFound = False 

Do 

  With Selection.Find 

   .ClearFormatting 

   .Replacement.ClearFormatting 

   .Text = "" 

   .Highlight = True 

   .Wrap = wdFindContinue 

   .Replacement.Text = "" 

   .Forward = True 

   .MatchWildcards = False 

   .Execute 

  End With 

'  Selection.Start = Selection.End - 1 

  thisColour = Selection.Range.HighlightColorIndex 

  If thisColour = searchColour Or thisColour > 100 Then 

     HlightFound = True 

  End If 

 ' MsgBox thisColour 

Loop Until HlightFound = True Or Selection.Find.Found = False 

If thisColour > 100 Then 



  Selection.Start = Selection.Start - 1 

  Selection.End = Selection.Start + 1 

  Do 

    Selection.Start = Selection.Start + 1 

    Selection.End = Selection.End + 1 

    thisColour = Selection.Range.HighlightColorIndex 

  Loop Until thisColour = searchColour 

  Do 

    Selection.End = Selection.End + 1 

    thisColour = Selection.Range.HighlightColorIndex 

  Loop Until thisColour <> searchColour 

    Selection.End = Selection.End - 1 

End If 

 

End Sub 

 

 

============================================ 

 

If you want to do it in one easy step, however, you can use this VBA macro: 

Sub Reverse() 

Selection.StartOf Unit:=wdParagraph, Extend:=wdMove 

Selection.MoveEnd Unit:=wdParagraph 

Selection.ParagraphFormat.Shading.BackgroundPatternColorIndex = wdBlack 

Selection.Font.ColorIndex = wdWhite 

End Sub 

All you need to do is place the insertion point somewhere within the paragraph, and then run the macro. As with 

most any macro, you can assign it to a toolbar button or a shortcut key so you 

============================================ 

All that rubbish below can be done with: 

 

myDirName = ActiveDocument.Path 

If myDirName > "" Then 

  ChangeFileOpenDirectory myDirName 

 

' Now check that this really has set the current directory. 

  MsgBox CurDir 

Else 

  MsgBox ("File not yet saved.") 

End If 

 

And you can then open and save files just by the filename, knowing 

which directory they are in. 

 

 

 

Sub Test() 

myFullFileName = ActiveDocument.FullName 

myFileName = ActiveDocument.Name 

If myFullFileName = myFileName Then 

  MsgBox ("File not yet saved.") 

Else 

' This returns the filepath of the directory containing 

' the active document 

  myDirName = Left(myFullFileName, InStr(myFullFileName, myFileName) - 2) 

' Now make this the current directory 

  ChangeFileOpenDirectory myDirName 



' And now you can do things in that directory! 

  Documents.Open FileName:="wordtips" 

' Just checking that this really has set the current directory. 

  MsgBox CurDir 

End If 

End Sub 

 

 

============================================ 

Sub Test() 

Dim v As Variable 

varExists = False 

For Each v In ActiveDocument.Variables 

  If v.Name = "tColour" Then varExists = True: Exit For 

Next v 

 

If varExists = False Then ActiveDocument.Variables.Add "tColour", 7 

 

searchColour = ActiveDocument.Variables("tColour") 

 

' If no text is selected, search for next highlight 

If Selection.Start = Selection.End Then GoTo FindNext 

 

' If some text is selected, see what colour it is; 

' then go find more text of that colour. 

selColour = Selection.Font.Color 

searchColour = selColour 

ActiveDocument.Variables("tColour") = searchColour 

 

FindNext: 

Selection.Start = Selection.End 

HlightFound = False 

With Selection.Find 

 .ClearFormatting 

 .Replacement.ClearFormatting 

 .Text = "" 

 .Font.Color = searchColour 

 .Wrap = wdFindContinue 

 .Replacement.Text = "" 

 .Forward = True 

 .MatchWildcards = False 

 .Execute 

End With 

 

End Sub 

 

Sub FindHighlight() 

Dim v As Variable 

varExists = False 

For Each v In ActiveDocument.Variables 

  If v.Name = "hColour" Then varExists = True: Exit For 

Next v 

 

If varExists = False Then ActiveDocument.Variables.Add "hColour", 7 

 

searchColour = ActiveDocument.Variables("hColour") 

 



' If no text is selected, search for next highlight 

If Selection.Start = Selection.End Then GoTo FindNext 

 

' If some text is selected, see what colour it is; 

' then go find more text of that colour. 

selColour = Selection.Range.HighlightColorIndex 

If selColour > 0 Then 

  searchColour = selColour 

  ActiveDocument.Variables("hColour") = searchColour 

  GoTo FindNext 

End If 

Selection.Start = Selection.End 

 

Do 

  With Selection.Find 

   .ClearFormatting 

   .Replacement.ClearFormatting 

   .Text = "" 

   .Highlight = True 

   .Wrap = wdFindContinue 

   .Replacement.Text = "" 

   .Forward = True 

   .MatchWildcards = False 

   .Execute 

  End With 

 

  myResponse = MsgBox("This colour?", vbQuestion + vbYesNoCancel) 

  If myResponse = vbCancel Then Exit Sub 

  If Selection.Find.Found = False Then Exit Sub 

Loop Until myResponse = vbYes 

searchColour = Selection.Range.HighlightColorIndex 

ActiveDocument.Variables("hColour") = searchColour 

 

FindNext: 

Selection.Start = Selection.End 

HlightFound = False 

Do 

  With Selection.Find 

   .ClearFormatting 

   .Replacement.ClearFormatting 

   .Text = "" 

   .Highlight = True 

   .Wrap = wdFindContinue 

   .Replacement.Text = "" 

   .Forward = True 

   .MatchWildcards = False 

   .Execute 

  End With 

 

  If Selection.Range.HighlightColorIndex = searchColour Then 

     HlightFound = True 

  End If 

Loop Until HlightFound = True Or Selection.Find.Found = False 

 

End Sub 

 

 



============================================ 

they don’t use one of them. 

Sub ScoreCard() 

Dim iScore As Integer 

Dim iTopScore As Integer 

Dim WordList As Variant 

Dim i As Integer 

Dim sUnused As String 

' Enter the words or phrases in the array below; 

' each word or phrase in quotation marks and 

' separated by commas 

WordList = Array("Mr.", "jelly", "wince", _ 

"proper", "fix", "compound", "high and dry") 

' Counts the number of words in the array 

iTopScore = CInt(UBound(WordList)) + 1 

iScore = iTopScore 

' Counts the number of "misses" 

sUnused = "" 

For i = 1 To iTopScore 

With Selection.Find 

.Forward = True 

.Wrap = wdFindContinue 

.Format = False 

.MatchCase = False 

.MatchAllWordForms = False 

.MatchWholeWord = True 

.Execute FindText:=WordList(i - 1) 

End With 

If Selection.Find.Found = False Then 

iScore = iScore - 1 

sUnused = sUnused & vbCrLf & WordList(i - 1) 

End If 

Next i 

' Displays the score 

If iScore = iTopScore Then 

sUnused = "All words and phrases were used." 

Else 

sUnused = "The following words and phrases" & _ 

" were not used:" & sUnused 

End If 

sUnused = vbCrLf & vbCrLf & sUnused 

MsgBox Prompt:="The score is " & iScore & _ 

" of " & iTopScore & sUnused, Title:="What's the Score?" 

End Sub 

The macro displays a score for the composition and also displays any of the words or phrases th 

 

============================================ 

Date: Sat, 19 Sep 2009 10:43:07 +0100 

From: Paul Beverley <paul@archivepub.co.uk> 

To: Paul Beverley <paul.beverley@livtech.co.uk> 

Subject: Bookmarks macro 

 

Sub Macro2() 

' 

' Macro2 Macro 

' Macro recorded 9/19/2009 by Paul Beverley 

' 



    With ActiveDocument.Bookmarks 

        .Add Range:=Selection.Range, Name:="PaulsMark" 

        .DefaultSorting = wdSortByName 

        .ShowHidden = False 

    End With 

    Selection.EndKey Unit:=wdStory 

    Selection.HomeKey Unit:=wdStory 

    Selection.GoTo What:=wdGoToBookmark, Name:="PaulsMark" 

    Selection.Find.ClearFormatting 

    With Selection.Find 

        .Text = "EL measure" 

        .Replacement.Text = "EL measure" 

        .Forward = True 

        .Wrap = wdFindContinue 

        .Format = False 

        .MatchCase = True 

        .MatchWholeWord = False 

        .MatchWildcards = False 

        .MatchSoundsLike = False 

        .MatchAllWordForms = False 

    End With 

End Sub 

 

 

 

All the best, 

 

Paul 

 

 

Paul Beverley (Archive Publications), LCGI, Advanced Member SfEP 

--------------------------------------------------------------------- 

Editing & proofreading  +44-1603-722544 - http://www.archivepub.co.uk 

 

 

============================================ 

' First sort out which is the list of F&Rs 

' and which the the text to be worked on 

theList = "" 

theText = "" 

docs = Word.Documents.Count 

' Examine the curently active file 

fileName = ActiveDocument.Name 

startFile = Left(fileName, InStr(fileName, ".") - 1) 

 

ListNo = 0 

textNo = 0 

Select Case docs 

 ' If only one doc, then find a list on disc ... 

MyError = 8: GoTo myErrorReport   theText = startFile 

 ' Check on disc for the list 

   textFullName = ActiveDocument.FullName 

   textFileName = ActiveDocument.Name 

   dirName = Replace(textFullName, textFileName, "") 

 

   listFullFilename = dirName + "PElist.doc" 

   If Dir(listFullFilename) > "" Then 



    ' If a PElist file exists, open it ... 

      Documents.Open fileName:=listFullFilename 

      If MsgBox("Is this the list?", vbQuestion _ 

        + vbYesNo, Title:="PreEdit") = vbNo Then Exit Sub 

   Else 

    ' ... otherwise create a new one 

      Documents.Add 

      ActiveDocument.SaveAs fileName:=listFullFilename 

      Exit Sub:   ' Stop macro and let user create a list 

   End If 

   docs = 2 

End If 

 

For i = 1 To docs 

   fileName = Application.Documents(i).Name + "." 

 ' The dummy dot is in case there's a file w/o ".doc" 

   fileName = Left(fileName, InStr(fileName, ".") - 1) 

   Windows(fileName).Activate 

   Set rng = ActiveDocument.Paragraphs(1).Range 

   rng.End = rng.End - 1 

   Ftext = rng 

   If Left(Ftext, 8) = "| File: " Then 

      ListNo = i 

    ' If so, pick off the file name of the text 

      If Len(Ftext) > 10 Then 

         docText = Right(Ftext, Len(Ftext) - 8) 

       ' Is docText the name of a loaded file 

         For j = 1 To docs 

           fileName = Application.Documents(j).Name + "." 

           ' The dummy dot is in case there's a file w/o ".doc" 

           fileName = Left(fileName, InStr(fileName, ".") - 1) 

           If fileName = docText Then 

              textNo = j 

              j = docs + 1 

              i = docs + 1 

           End If 

         Next j 

      End If 

   End If 

   If i <= docs Then 

      Set rng = ActiveDocument.Content 

      rng.End = rng.Start + 50 

      With rng.Find 

        .Text = "|" 

        .Execute 

      End With 

      If rng.Find.Found Then 

         ListNo = i 

         i = docs 

      End If 

   End If 

Next i 

 

' At this stage, we hope we've found the listNo, 

' but if not, generate an error 

If ListNo = 0 Then MyError = 8: GoTo myErrorReport 

 



fileName = Application.Documents(ListNo).Name 

theList = Left(fileName, InStr(fileName, ".") - 1) 

Windows(theList).Activate 

 

' If only two documents, they are Nos 1 and 2 

If docs = 2 Then textNo = 3 - ListNo 

 

' If we can't find the text, assume that it's the 

'  file that was on screen when the macro was run. 

If textNo = 0 Then 

   theText = startFile 

Else 

   fileName = Application.Documents(textNo).Name 

   theText = Left(fileName, InStr(fileName, ".") - 1) 

End If 

 

If theList = theText Then MyError = 7: GoTo myErrorReport 

 

' Check that last line is blank and add CrLf if not 

lastPara = ActiveDocument.Paragraphs.Count 

Set rng = ActiveDocument.Paragraphs(lastPara).Range 

Ftext = rng 

If Len(Ftext) > 1 Then rng.InsertAfter vbCrLf 

 

' Check and update | File: line 

Set rng = ActiveDocument.Paragraphs(1).Range 

Ftext = rng 

If InStr(Ftext, "File:") > 0 Then rng.Delete 

rng.InsertBefore "| File: " & theText & vbCrLf 

Selection.HomeKey Unit:=wdStory 

lastLine = ActiveDocument.Paragraphs.Count 

 

 

 

============================================ 

From: http://www.word.mvps.org/FAQs/MacrosVBA/ModifyRecordedMacro.htm 

 

Suppose you record a macro that opens a document and 

then does something to it, such as changing the view. The 

beginning of the macro may look like this: 1 

 

Sub Macro2() 

  Documents.Open FileName:= "Lorem.doc" , _ 

      ConfirmConversions:= False , _ 

      ReadOnly:= False , AddToRecentFiles:= False , _ 

      PasswordDocument:= "" , PasswordTemplate:= "" , _ 

      Revert:= False , WritePasswordDocument:= "" , _ 

      WritePasswordTemplate:= "" , _ 

      Format:=wdOpenFormatAuto, XMLTransform:= "" 

  ' more code, for example ... 

  ActiveWindow.View = wdPrintView 

End Sub 

 

  

 

The recorded macro for opening a document, like the 

recording of the Format > Font dialog, contains unneeded 



things. In this case, they are parameters that contain 

information about the file, such as a password. The only 

parameter that's necessary is the FileName. You can remove 

the other parameters from the command, and Word will use 

its default values for them. 

 

A more important problem is that every time you run the 

recorded macro, it will open the same document. This may 

be what you intend, but more likely you want the macro to 

let you choose which document to open. 

 

One way to get the file's name into the macro is to display an 

input box, where you can type it in. The InputBox function 

shows a message box with a text entry field, and its result is 

the name that you type into the field. 

 

Sub Macro2A() 

  Dim MyFileName As String 

  MyFileName = InputBox( "Enter file name to open:" , _ 

      "Open a Document" ) 

  If MyFileName <> "" Then 

    Documents.Open FileName:=MyFileName 

    ' more code, for example ... 

    ActiveWindow.View = wdPrintView 

  End If 

End Sub 

 

 But this isn't very friendly. There's a good chance of making 

a typing mistake. And if the document isn't in the currently 

active folder, you have to type the entire path to it. A better 

idea is to use the File > Open dialog that's already built into 

Word, which lets you browse to and select the proper 

document. When you click the OK button in the dialog, 

Word opens the selected document. The macro is simpler, 

too, because it doesn't need a separate Documents.Open 

statement&8212;the dialog handles it all for you. 

 

Sub Macro2B() 

  If Dialogs(wdDialogFileOpen).Show = - 1 Then 

    ' more code, for example ... 

    ActiveWindow.View = wdPrintView 

  End If 

End Sub 

 

  

 

The word "Dialogs" in this code refers to a list of all of 

Word's built-in dialogs. Each dialog has a name that starts 

with "wdDialog". In this case, wdDialogFileOpen is the name 

of the built-in File > Open dialog, and the expression 

"Dialogs(wdDialogFileOpen)" selects that particular dialog 

from the list. To see all of the possible names, press F2 in 

the VBA editor to display the Object Browser, type 

wdDialog into the search box, and press Enter. 

 

The word ".Show" refers to a method of the dialog. A 

method is an action that can be done&8212;the .Show 



method causes the dialog to appear and execute (carry out 

its function). 

 

Many methods also have a value after they execute, which 

tells the macro something about what just happened (this is 

called "returning" the value). In this case, if you click the OK 

button in the dialog then the .Show method returns the value 

&8211;1, but if you click the Cancel button or the X in the 

title bar then .Show returns the value 0. The VBA help topic 

for each method tells you what values that method can 

return and what they mean. You can use the returned value 

in an If statement, as in Macro2B, to decide what to do. 

 

Similar changes to recorded code let you make macros that 

save files to variable locations, search for variable strings, and 

many other unrecordable variations. You can find out more 

at Getting help with calling Word's built-in dialogs using 

VBA. 

 

 

 

 

 

 

  

 

 

 

 

 

============================================ 

Public Sub PaulKeyBindings() 

 

Dim kb As KeyBinding 

Dim s As String 

Dim tbl As Table 

 

' Check active document for text 

' and warn user. 

If ActiveDocument.Content <> vbCr Then 

   If MsgBox("Active doc has content. Proceed?", vbQuestion + vbYesNo) = vbNo Then Exit Sub 

End If 

 

' Print Heading 

Selection.InsertAfter KeyBindings.Count & _ 

   " key bindings in context: " & CustomizationContext & vbCr & vbCr 

 

' Collapse selection to end of document 

Selection.Collapse wdCollapseEnd 

 

' Insert start of table bookmark 

ActiveDocument.Bookmarks.Add "StartOfTable" 

 

' Print table heading 

Selection.InsertAfter "KeyString" & vbTab & _ 

   "KeyCategory" & vbTab & "Command" & vbTab _ 

   & "KeyCode" & vbTab & "KeyCode2" _ 



  & vbTab & "CommandParameter" & vbCr 

 

'Start the For loop, printing key binding data 

Selection.Collapse wdCollapseEnd 

For Each kb In KeyBindings 

   s = kb.KeyString & vbTab & kb.KeyCategory _ 

      & vbTab & kb.Command & vbTab & kb.KeyCode _ 

      & vbTab & kb.KeyCode2 & vbTab _ 

      & kb.CommandParameter & vbCr 

   Selection.InsertAfter s 

   Selection.Collapse wdCollapseEnd 

Next kb 

 

' Collapse selection to end of document 

Selection.Collapse wdCollapseEnd 

 

' Insert end of table bookmark 

ActiveDocument.Bookmarks.Add "EndOfTable" 

 

' Select text between bookmarks 

ActiveDocument.Bookmarks("StartofTable").Select 

With Selection 

    .ExtendMode = True 

.GoTo wdGoToBookmark, , , "EndOfTable" 

    .ExtendMode = False 

End With 

 

Set tbl = Selection.ConvertToTable(Separator:=wdSeparateByTabs) 

tbl.Columns.AutoFit 

Selection.Collapse wdCollapseEnd 

 

End Sub 

 

 

 

============================================ 

Sub ListAllWords() 

   Dim rng As Range, myWord As String 

 

   Selection.EndKey Unit:=wdStory 

   Selection.TypeText Text:="==========" & vbCrLf 

   Selection.WholeStory 

   Selection.End = Selection.End - 12 

   Selection.Range.HighlightColorIndex = wdYellow 

   Selection.EndKey Unit:=wdStory 

 

   gogo = True 

   Do While gogo = True 

      Set rng = ActiveDocument.Range 

      With rng.Find 

         .ClearFormatting 

         .MatchWildcards = True 

         .Highlight = True 

         .Replacement.Highlight = False 

         .Text = "<*>" 

         .Execute Replace:=wdReplaceOne 

      End With 



      gogo = rng.Find.Found 

      If gogo = True Then 

         myWord = rng 

         Set rng = ActiveDocument.Range 

         With rng.Find 

            .ClearFormatting 

            .Replacement.Highlight = False 

            .MatchCase = False 

            .Text = "<" & myWord & ">" 

            .Execute Replace:=wdReplaceAll 

         End With 

         myWord = StrConv(myWord, vbLowerCase) 

         Selection.TypeText Text:=myWord & vbCrLf 

      End If 

   Loop 

 

      Selection.WholeStory 

      Selection.Range.HighlightColorIndex = wdNoHighlight 

 

   Selection.HomeKey Unit:=wdStory 

   With Selection.Find 

      .ClearFormatting 

      .Text = "=====^p" 

      .MatchWildcards = False 

      .Execute 

   End With 

 

   listStart = Selection.End 

   Selection.EndKey Unit:=wdStory 

   Selection.Start = listStart 

   Selection.Sort 

   Selection.End = Selection.Start 

 

End Sub 

 

 

 

============================================ 

OK, the following macro loads all the doc, docx and rtf files in a 

specified-in-the-macro folder and counts the total number of words. 

It doesn't use ActiveDocument.Words.Count because that seems to treat 

punctuation as words and so gives an inflated count (and we wouldn't 

want that, now, would we?!) 

 

It has to do the count by using a wildcard search to find all of the 

(words consisting of letters, hyphens and apostrophes) and then 

follows it with a count of all (words consisting of numbers and 

commas), e.g. "15,000" is one single word, as are "can't" and 

"half-hearted". 

 

 

 

Sub MultiFileCount() 

   Dim fs, foc, fc, fi, fiType 

   Dim foldername As String 

   Dim myDoc As Document 

 



   foldername = "c:\Full\Address\Of\Folder" 

 

   Set fs = CreateObject("Scripting.FileSystemObject") 

   Set foc = fs.GetFolder(foldername) 

   Set fc = foc.Files 

 

   WordsTotal = 0 

   FilesTotal = 0 

   For Each fi In fc 

     fiType = Right(fi, 4) 

     If fiType = ".doc" Or fiType = "docx" Or fiType = ".rtf" Then 

       Set myDoc = Application.Documents.Open(filename:=fi.Path, ReadOnly:=True) 

 

       With Selection.Find 

         .ClearFormatting 

         .Replacement.ClearFormatting 

         .MatchWildcards = True 

         .Text = "[/a-zA-Z\'\-’]@[!/a-zA-Z\'\-\’]" 

         .Replacement.Text = " ^& ^0124 " 

         .Replacement.Highlight = False 

         .Wrap = wdFindContinue 

         .Format = True 

       End With 

 

       Selection.HomeKey Unit:=wdStory 

       Do While Selection.Find.Execute 

          WordsTotal = WordsTotal + 1 

       Loop 

 

       With Selection.Find 

         .ClearFormatting 

         .Replacement.ClearFormatting 

         .MatchWildcards = True 

         .Text = "[!a-zA-Z][0-9,]@[!0-9,]" 

         .Replacement.Text = " ^& ^0124 " 

         .Replacement.Highlight = False 

         .Wrap = wdFindContinue 

         .Format = True 

       End With 

       Selection.HomeKey Unit:=wdStory 

       Do While Selection.Find.Execute 

          WordsTotal = WordsTotal + 1 

       Loop 

 

       myDoc.Close 

       FilesTotal = FilesTotal + 1 

     End If 

   Next 

   MsgBox ("Total words in" + Str(FilesTotal) + " files: " + Str(WordsTotal)) 

 

End Sub 

 

 

 

============================================ 

'Sub MultiFileFandR() 

  Dim fs, foc, fc, fi, fiType, fiList 



  Dim foldername As String 

  Dim myDoc As Document 

 

  foldername = "c:\Program Files\VirtualAcorn\VirtualRPC-SA\HardDisc4\MyFiles2\WIP" 

 

  Set fs = CreateObject("Scripting.FileSystemObject") 

  Set foc = fs.GetFolder(foldername) 

  Set fc = foc.Files 

 

  filesTotal = 0 

  fiList = "" 

  For Each fi In fc 

    fiType = Right(fi, 4) 

    If fiType = ".doc" Or fiType = "docx" Or fiType = ".rtf" Then 

    fiList = fiList + vbCrLf + fi 

    End If 

  Next 

  fiList = fiList + vbCrLf + vbCrLf + "FandR on all " + str(filesTotal) + " files?" 

  MsgBox (fiList, vbYesNo) = vbNo Then Exit Sub 

 

 

  For Each fi In fc 

    'Do what you need to with each file 

    'Each fi is a 'File object' (look it up in VBA) and you can 

    'access a lot of properties on it.  You can filter out thoseOR fitype = ".wbk" OR 

    'files you don't need to get data from. 

    fitype = Right(fi, 4) 

    If fitype = ".doc" Or fitype = "docx" Or fitype = ".rtf" Then 

      Set myDoc = Application.Documents.Open(filename:=fi.Path, ReadOnly:=True) 

      ' WordTotal = WordTotal + ActiveDocument.Words.Count 

      ' FilesTotal = FilesTotal + 1 

 

      With Selection.Find 

         .ClearFormatting 

         .Replacement.ClearFormatting 

         .Text = "with" 

         .Replacement.Text = "^&" 

         .Wrap = wdFindContinue 

         .Replacement.Highlight = true 

         .MatchWildcards = True 

         .Format = True 

      End With 

      Selection.Find.Execute Replace:=wdReplaceAll 

 

      myDoc.Save 

      myDoc.Close 

    End If 

  Next 

  MsgBox ("Total words in" + Str(FilesTotal) + " files: " + Str(WordTotal)) 

 

 

============================================ 

Sub PreEdit() 

 

'(c)2009 Paul Beverley 

 

' This version is dated 05.05.09. 



' Thanks to Anna Sharman, Matthew Strawbridge and Phillip Marsden 

'  for programming segments for some features. 

 

' This version, April 2009, is for use by SfEP MEMBERS ONLY. 

' Please do not pass it on to non-members. 

 

' Show it to non-members, by all means, but they may not use it 

'  unless and until they join SfEP. 

 

' These are the default values. Change them if you prefer others. 

 

Highlight = 3 

Ignore = 0 

MyColour = wdTurquoise 

 

PreEditList = "C:\Lists\PreEdit.txt" 

 

On Error GoTo ReportIt 

 

Dim findarray(500) As String 

Dim replacearray(500) As String 

Dim colourarray(500) As WdColorIndex 

 

 

' If you're going to have lists with more than 500 items then 

'  increase these three lines above. 

 

OldText = Selection.Find.Text 

OldReplaceText = Selection.Find.Replacement.Text 

OldMC = Selection.Find.MatchCase 

OldMW = Selection.Find.MatchWildcards 

OldHL = Selection.Find.Highlight 

 

Dim findstring As String 

Dim replacestring As String 

Dim ReadData As String 

Dim DataLine As String 

Dim Title As String 

Dim MyText As String 

 

Dim ColourNow As WdColorIndex 

Dim OldColour As WdColorIndex 

OldColour = Options.DefaultHighlightColorIndex 

 

Dim FS As FileSystemObject 

Set FS = New FileSystemObject 

 

Dim InputFile As TextStream 

Set InputFile = FS.OpenTextFile(PreEditList, ForReading) 

 

Do 

  DataLine = InputFile.ReadLine() 

  Title = DataLine 

  DataLine = Replace(Title, " ", "") 

  DataLine = Right(DataLine, 7) 

  If DataLine = "light=0" Then Highlight = 0: ColourNow = 0 

  If DataLine = "light=1" Then Highlight = 1: ColourNow = OldColour 



  If DataLine = "light=2" Then Highlight = 2: ColourNow = MyColour 

  If DataLine = "light=3" Then Highlight = 3: ColourNow = OldColour 

  If DataLine = "gnore=1" Then Ignore = 1 

Loop Until Left(Title, 1) = "#" Or InputFile.AtEndOfStream 

If Title = "" Then Title = "NoSections" 

 

If InputFile.AtEndOfStream Then 

  InputFile.Close 

  Set InputFile = FS.OpenTextFile(PreEditList, ForReading) 

Else 

   Do 

     ReadData = InputFile.ReadLine() 

   Loop Until (ReadData = Title) Or InputFile.AtEndOfStream 

   If InputFile.AtEndOfStream Then 

     InputFile.Close 

     Set InputFile = FS.OpenTextFile(PreEditList, ForReading) 

   End If 

End If 

 

idx = 0 

While (Not InputFile.AtEndOfStream) And Title > "" 

  ReadData = InputFile.ReadLine() 

    If Left(ReadData, 1) = "@" Then 

      ReadData = Right(ReadData, (Len(ReadData) - 1)) 

      highlighting = 0 

    Else 

      highlighting = 1 

    End If 

    If (ReadData > "") And (Not Left(ReadData, 1) = "|") And (Not Left(ReadData, 1) = "#") Then 

    colonpos = InStr(ReadData, "|") 

    findstring = Left(ReadData, colonpos - 1) 

    replacestring = Right(ReadData, (Len(ReadData) - colonpos)) 

    findarray(idx) = findstring 

    replacearray(idx) = replacestring 

    colourarray(idx) = ColourNow * highlighting 

    idx = idx + 1 

  Else 

    If Left(ReadData, 1) = "#" Then Title = "" 

    If Left(ReadData, 1) = "|" Then 

      DataLine = Replace(ReadData, " ", "") 

      If Highlight = 3 And InStr(DataLine, "olour=") > 0 Then ColourNow = Val(Mid(DataLine, 9)) 

    End If 

  End If 

Wend 

 

idxmax = idx - 1 

InputFile.Close 

 

Offset = 7 

 

If idxmax >= 0 Then 

 For idx = 0 To idxmax 

     Selection.HomeKey Unit:=wdStory 

   findstring = findarray(idx) 

   replacestring = replacearray(idx) 

   With Selection.Find 

     If Ignore = 1 Then .Highlight = False 



     If Left(findstring, 1) = "~" Then 

       findstring = Right(findstring, (Len(findstring) - 1)) 

       .MatchWildcards = True 

     Else 

       .MatchWildcards = False 

     End If 

     If Left(findstring, 1) = "¬" Then 

       findstring = Right(findstring, (Len(findstring) - 1)) 

       .MatchCase = False 

     Else 

       .MatchCase = True 

     End If 

     .Text = findstring 

     If (Highlight > 0 And replacestring > "") Then .Replacement.Font.Color = (colourarray(idx) Mod 10) + Offset 

     .Forward = True 

     .Wrap = wdFindContinue 

     .Replacement.Text = replacestring 

   End With 

     Counter = 0 

     Do While Selection.Find.Execute 

       Counter = Counter + 1 

     Loop 

     Selection.HomeKey Unit:=wdStory 

     Selection.Find.Execute Replace:=wdReplaceAll 

     If colourarray(idx) > 9 Then 

       MyText = findstring + vbTab + Str$(Counter) + vbCrLf 

       Selection.EndKey Unit:=wdStory 

       Selection.TypeText Text:=MyText 

     End If 

 Next 

End If 

 

If Highlight = 0 Then Options.DefaultHighlightColorIndex = 0 

If Highlight = 1 Then Options.DefaultHighlightColorIndex = ColourNow 

 

For idx = 2 To 7 

  Options.DefaultHighlightColorIndex = idx 

  Selection.HomeKey Unit:=wdStory 

 

  With Selection.Find 

    .ClearFormatting 

    .Font.Color = idx + Offset 

    .Replacement.ClearFormatting 

    .Replacement.Font.Color = wdColorAutomatic 

    .Replacement.Highlight = True 

    .Text = "" 

    .Replacement.Text = "" 

    .Forward = True 

    .Wrap = wdFindContinue 

  End With 

  Selection.Find.Execute Replace:=wdReplaceAll 

Next 

 

With Selection.Find 

  .ClearFormatting 

  .Replacement.ClearFormatting 

  .Text = "^^^^(?)" 



  .Replacement.Text = "\1" 

  .Replacement.Font.Superscript = True 

  .Wrap = wdFindContinue 

  .MatchWildcards = True 

  .Format = True 

End With 

' Selection.Find.Execute Replace:=wdReplaceAll 

 

With Selection.Find 

  .ClearFormatting 

  .Replacement.ClearFormatting 

  .Text = "__(?)" 

  .Replacement.Text = "\1" 

  .Replacement.Font.Subscript = True 

  .Wrap = wdFindContinue 

  .MatchWildcards = True 

  .Format = True 

End With 

' Selection.Find.Execute Replace:=wdReplaceAll 

 

With Selection.Find 

  .ClearFormatting 

  .Replacement.ClearFormatting 

  .Text = "\<\<(*)\>\>" 

  .Replacement.Text = "\1" 

  .Replacement.Font.Italic = True 

  .Wrap = wdFindContinue 

  .MatchWildcards = True 

  .Format = True 

End With 

' Selection.Find.Execute Replace:=wdReplaceAll 

 

With Selection.Find 

  .ClearFormatting 

  .Replacement.ClearFormatting 

  .Text = "\[\[(*)\]\]" 

  .Replacement.Text = "\1" 

  .Replacement.Font.Bold = True 

  .Wrap = wdFindContinue 

  .MatchWildcards = True 

  .Format = True 

End With 

' Selection.Find.Execute Replace:=wdReplaceAll 

 

' Dummy F&R to restore F&R window 

 

 With Selection.Find 

   .ClearFormatting 

   .Replacement.ClearFormatting 

   .Text = OldText 

   .Replacement.Text = OldReplaceText 

   .Highlight = OldHL 

   .MatchCase = OldMC 

   .MatchWildcards = OldMW 

 End With 

 

 



Options.DefaultHighlightColorIndex = OldColour 

 

 

FinishHere: 

Exit Sub 

 

ReportIt: 

MySearch = vbCrLf + vbCrLf + "Find: " + findstring + vbCrLf + vbCrLf + "Replace: " + replacestring 

Select Case Err.Number 

  Case 5 

    MyError = "Missing '|' in line:" + vbCrLf + vbCrLf + ReadData 

  Case 53, 76 

    MyError = "Can't find a pre-edit file at: " + vbCrLf + vbCrLf + PreEditList 

  Case 5692 

    MyError = "You can't use ^p in a wildcard search:" + vbCrLf + vbCrLf + findstring + "|" + replacestring 

  Case Else 

    MyError = Err.Description + MySearch 

End Select 

 

MsgBox (MyError) 

Resume FinishHere 

 

 

End Sub 

 

 

 

============================================ 

SetRange Method 

See Also Applies To Example Specifics 

Sets the starting and ending character positions for the range or selection. 

 

Note   Character position values start at the beginning of the story, with the first value being 0 (zero). All characters 

are counted, including nonprinting characters. Hidden characters are counted even if they're not displayed. 

 

expression.SetRange(Start, End) 

 

expression   Required. An expression that returns a Range or Selection object. 

 

Start   Required Long. The starting character position of the range or selection. 

 

End   Required Long. The ending character position of the range or selection. 

 

Remarks 

The SetRange method redefines the starting and ending positions of an existing Selection or Range object. This 

method differs from the Range method, which is used to create a range, given a starting and ending position. 

 

Example 

This example selects the first 10 characters in the document. 

 

Selection.SetRange Start:=0, End:=10 

This example uses SetRange to redefine myRange to refer to the first three paragraphs in the active document. 

 

Set myRange = ActiveDocument.Paragraphs(1).Range 

myRange.SetRange Start:=myRange.Start, _ 

    End:=ActiveDocument.Paragraphs(3).Range.End 



This example uses SetRange to redefine myRange to refer to the area starting at the beginning of the document and 

ending at the end of the current selection. 

 

Set myRange = ActiveDocument.Range(Start:=0, End:=0) 

myRange.InsertAfter "Hello " 

myRange.SetRange Start:=myRange.Start, End:=Selection.End 

This example extends the selection to the end of the document. 

 

Selection.SetRange Start:=Selection.Start, _ 

    End:=ActiveDocument.Content.End 

 

 

 

 

 

============================================ 

 

Xtreme Visual Basic Talk > Legacy Visual Basic (VB 4/5/6) > VBA / Office Integration > Word, 

PowerPoint, Outlook, and Other Office Products > Help! How to search an MS Word textbox with 

a VBA macro? 

 

---------------------------------------------------------------------- 

 

PDA 

 

View Full Version : Help! How to search an MS Word textbox with a VBA macro? 

 

---------------------------------------------------------------------- 

 

Peter Ring 

 

09-16-2004, 09:25 AM 

 

 

I'm currently writing a macro to search Word documents for 

certain fields. 

 

If I do the search manually, there is no problem with 

searching the Word textboxes. 

 

But when I record this procedure and run it again, the 

(floating, anchored) textboxes are not searched. I then have 

to select the textboxes one-by-one and run the macro there. I 

guess the problem is the object "Selection". 

 

Simple example: 

Selection.Find.ClearFormatting 

 

With Selection.Find 

.Text = "^d" 'Find Fields 

.Replacement.Text = "" 

.Forward = True 

.Wrap = wdFindContinue 

.Format = False 

.MatchCase = False 

.MatchWholeWord = False 

.MatchWildcards = False 



.MatchSoundsLike = False 

.MatchAllWordForms = False 

End With 

Selection.Find.Execute 

MsgBox Selection.Text 

Selection.Find.Execute 

MsgBox Selection.Text 

 

:confused: 

 

I'm using Word XP, but the macro should preferably work 

with all MS Word versions using VBA. 

 

Does anybody know a method to search the whole 

document including the Word textboxes? 

 

 

 

 

---------------------------------------------------------------------- 

 

herilane 

 

09-16-2004, 10:54 AM 

 

I think you may need to run Find twice. Once for the main text, and once for textboxes. That's the 

only way I can think of. :( 

'For the main text: 

With Activedocument.Range.Find 

'For the textboxes: 

ActiveDocument.Shapes.SelectAll 

With Selection.FindI'd be happy to hear of a better way, if anybody knows! 

 

---------------------------------------------------------------------- 

 

Peter Ring 

 

09-20-2004, 04:11 AM 

 

 

Many thanks to herilane for a good answer, which lead me 

on the track of the solution. 

 

However, it was not that simple. The solution was: 

 

For j = 1 To ActiveDocument.Shapes.Count 

ActiveDocument.Shapes(j).Select 

Selection.WholeStory 

GoSub DoSearch 

Next j 

 

where DoSearch is a subroutine containing the general 

search procedure and handling the results. 

 

 

 

 



---------------------------------------------------------------------- 

 

Powered by: vBulletin v3.6.4 

 

 

 

 

============================================ 

<Word.Tips.Net> Welcome toWord.Tips.Net 

 

[ 

  

 

  

 

RSS Feeds 

 

<RSS 2.0> Daily Nuggets (a WordTip every day) 

 

<RSS 2.0> Allen Wyatt's WordTips (the weekly classic) 

 

Tips.Net > WordTips Home > Formatting > Styles > Printing a Full Style Sheet 

 

Printing a Full Style Sheet 

 

Summary: Word supports the use of styles (they are very powerful), but it doesn't provide a way 

to get a full-featured style sheet printed. This tip examines ways you can create your own style 

sheets for printing. (This tip works with Microsoft Word 97, Word 2000, Word 2002, Word 2003, 

and Word 2007.) 

 

Dave would love a way to print a full-featured style sheet for his documents. He knows that he can 

choose to print "Styles" in the Print dialog box, but he would rather have a style sheet that shows the 

actual styles, such as color, size, font, etc. 

 

Unfortunately there is no such capability in Word. You can, however, create a style sheet of your 

liking by using a macro. For instance, the following will insert, in the current document, the names 

of all the styles available in the document. Each style name is on its own line (paragraph) and is 

formatting using the various styles. 

 

 

Sub ListStyleNames() 

   For Each Style In ActiveDocument.Styles 

       With Selection 

           .Style = ActiveDocument.Styles(Style) 

           .TypeText (ActiveDocument.Styles(Style).NameLocal) 

           .TypeParagraph 

       End With 

   Next 

End Sub 

 

Such an approach, while handy for a concise list of styles, isn't much more informative than what 

can be printed using the "Styles" designation in the Print dialog box. It does, however, provide a 

basis upon which one can build to create a more full-featured style sheet. 

 

The problem with creating a detailed style sheet using macros is that styles can contain a ton of 

information. The object model used by Word (and accessible in VBA) quickly becomes quite 

complex when testing styles to see what they contain. Here's just a simple example to give you the 



flavor: 

 

 

Sub SimpleStyleSheet() 

    Dim sOutput As String 

    Dim sTemp As String 

    Dim StyleTypes(4) As String 

 

    StyleTypes(1) = "Paragraph" 

    StyleTypes(2) = "Character" 

    StyleTypes(3) = "Table" 

    StyleTypes(4) = "List" 

 

    For Each Style In ActiveDocument.Styles 

        sOutput = Style.NameLocal & vbCrLf 

        sOutput = sOutput & "   Style type: " & StyleTypes(Style.Type) & vbCrLf 

        sTemp = Style.BaseStyle 

        If Len(sTemp) > 0 Then 

            sOutput = sOutput & "   Based on: " & Style.BaseStyle & vbCrLf 

        End If 

        sOutput = sOutput & "   Font: " & Style.Font.Name 

        sTemp = "" 

        If Style.Font.Bold Then sTemp = sTemp & "Bold, " 

        If Style.Font.Italic Then sTemp = sTemp & "Italic, " 

        If Len(sTemp) > 0 Then 

            sTemp = Left(sTemp, Len(sTemp) - 2) 

            sOutput = sOutput & " (" & sTemp & ")" 

        End If 

        sOutput = sOutput & vbCrLf 

        Selection.TypeText (sOutput & vbCrLf) 

    Next 

End Sub 

 

The only thing this macro does is to list all the styles, what type of styles they are, whether they are 

based on a different style (and if so, what that style is named), what font is used by the style, and 

whether the font is bold or italic. Anyone familiar with styles will immediately understand that these 

few items are only a small sampling of what can be defined within a style. To check all possible 

style formats and print them in the style sheet would make the macro very long, indeed. 

 

Even so, this macro might be useful as it provides an idea of how to put together your own style 

sheet. You just need to figure out what you want to see in the style sheet and then add the macro 

code to determine that information and print it out. 

 

Tip #6748 applies to Microsoft Word versions: 97 | 2000 | 2002 | 2003 | 2007 

 

 

 

<IMAGE>Take Control! Master the real power behind Word! Successfully master the secrets of 

powerful formatting and create documents that stand out from the rest. Best of all, you can create 

documents that are easy to maintain and quick to change. 

  

Check out WordTips: Styles and Templates today! 

 

  

 

  

 



  

 

Copyright © 2009<?php echo date("Y"); ?> Tips.Net | About | Contact | Advertise | Privacy | 

Write for Tips.Net 

 

 

 

 

============================================ 

Attribute VB_Name = "Word2TWiki" 

 

Sub Word2TWiki() 

'Attribute VB_Name = "Word2Wiki" 

'This function can be used to convert a Word doc to the TWiki formatting language 

'For references: http://www.twiki.org/cgi-bin/view/Plugins/MsWordToTWikiMLAddOn 

 

    Application.ScreenUpdating = False 

 

    CleanFormattingParagraphEndings 

 

    ConvertHeading "---+", wdStyleHeading1 

    ConvertHeading "---++", wdStyleHeading2 

    ConvertHeading "---+++", wdStyleHeading3 

    ConvertHeading "---++++", wdStyleHeading4 

    ConvertHeading "---+++++", wdStyleHeading5 

    ConvertHeading "---++++++", wdStyleHeading6 

 

    ConvertStyle "__", bold:=True, italic:=True 

    ConvertStyle "*<u>", twikiCode2:="</u>*", bold:=True, underline:=wdUnderlineSingle 

    ConvertStyle "==", bold:=True, fontName:="Courier New" 

 

    ConvertStyle "*", bold:=True 

    ConvertStyle "_", italic:=True 

    ConvertStyle "<u>", twikiCode2:="</u>", underline:=wdUnderlineSingle 

    ConvertStyle "=", fontName:="Courier New" 

 

    ConvertLists 

    ConvertHyperlinks 

 

    ConvertTables 

 

    WikiSaveAsHTMLAndConvertImages 

 

    ' Copy to clipboard 

    ActiveDocument.Content.Copy 

 

    Application.ScreenUpdating = True 

End Sub 

 

Private Sub ConvertTables() 

'This function was kindly provided by Merlijn van Deen <valhallasw{at}platypusnet{dot}org> 

'on September 17, 2005 

'MS Excel is used in order to handle merged cells 

 

Dim excelapp, sheet As Object 

Dim thisRow As Row 

Dim thisCell As Cell 



Dim myRange As Range 

 

For Each thisTable In ActiveDocument.Tables 

    thisTable.Select 

 

    'Breaks don't just break TWiki tables, but also the splitting routine 

    'Find and remove all breaks, they break split and/or TWiki 

    With Selection.Find 

        .ClearFormatting 

        .Replacement.ClearFormatting 

        .Wrap = wdFindStop 

        .MatchCase = False 

        .MatchWholeWord = True 

        .MatchWildcards = False 

        .MatchSoundsLike = False 

        .MatchAllWordForms = False 

        .Replacement.Text = " " 

        .Replacement.Font.bold = False 

        .Replacement.Font.italic = False 

 

        .Execute FindText:="^n", Replace:=wdReplaceAll 'column 

        .Execute FindText:="^m", Replace:=wdReplaceAll 'page 

        .Execute FindText:="^b", Replace:=wdReplaceAll 'section 

    End With 

    'Added by Jos Maccabiani on Sep 18, 2005: 

    'To preserve line breaks in the table, treat paragraph and line breaks in a 

    'special way: replace with unformatted %BR% 

    With Selection.Find 

        .ClearFormatting 

        .Replacement.ClearFormatting 

        .Wrap = wdFindStop 

        .MatchCase = False 

        .MatchWholeWord = True 

        .MatchWildcards = False 

        .MatchSoundsLike = False 

        .MatchAllWordForms = False 

        .Replacement.Text = " %BR% " 

        .Replacement.Font.bold = False 

        .Replacement.Font.italic = False 

 

        .Execute FindText:="^p", Replace:=wdReplaceAll 'paragraph 

        .Execute FindText:="^l", Replace:=wdReplaceAll 'line 

    End With 

 

    thisTable.Select 

    Selection.Copy 

 

    'use excel to fix merged cells 

    Set excelapp = CreateObject("Excel.Application") 

        excelapp.Workbooks.Add 

        Set sheet = excelapp.Worksheets.Add 

            sheet.Paste 

 

            'disable all borders, necessary to prevent extra spaces between 

            ' | | in merged cells 

            excelapp.Cells.Borders.LineStyle = wdNone 

 



            For Each Cell In excelapp.Selection.Cells 

                'First check if the cell is empty (or contains of spaces) 

                'If so, change contents to '&nbsp;' 

                'This is to prevent cells from being merged in twiki 

 

                If Len(Cell.FormulaR1C1) = 0 Then Cell.FormulaR1C1 = "&nbsp;" 

            Next 

 

            For Each Cell In excelapp.Selection.Cells 

                'Now unmerge-and-change all cells 

 

                Set c = Cell.Mergearea 'Cells have to be unmerged first,  but the area is needed later 

 

                'nul is an output variable; VBA syntax checking needed  one, even though 

                'Split is listed as a Method for Cell. 

                'This sub splits the cells in word to their original state  (with information from Excel) 

                '! a SUB will give no output normally, however, the VBA  syntax checker doesn't recognise the use of 

Split as a sub 

                '! The syntax checker will complain about adding nul =  _and_ about removing it when thisTable is 

defined 

                '! The program works without defining thisTable, so just  keep the nul = (or find a way to fix it) 

                nul = thisTable.Cell(Cell.Row, Cell.Column).Split(c.Rows.Count, c.Columns.Count) 

 

                c.UnMerge 

 

                If c.Rows.Count > 1 Then 'rows! 

                    For x = 2 To c.Rows.Count 

                        c.Cells(x, 1) = "^" 

                    Next x 

                End If 

            Next 

 

            excelapp.Selection.Copy 

 

            Set myRange = thisTable.Cell(1, 1).Range 

            myRange.End = thisTable.Cell(thisTable.Rows.Count, thisTable.Columns.Count).Range.End 

            myRange.Select 

 

            'fix it, the dirty way 

            Selection.Paste 'replace the table with the excel data 

 

 

            'cleaning up 

            Set sheet = Nothing 

            excelapp.DisplayAlerts = False 'To prevent 'Do you want to  save (...)' dialog of excel 

            excelapp.Quit 

            Set excelapp = Nothing 

 

            'End with the original procedure 

            For Each thisRow In thisTable.Rows 

                thisRow.Range.InsertBefore "|" 

                thisRow.Range.InsertAfter "|" 

            Next thisRow 

            thisTable.ConvertToText Separator:="|" 

 

Next thisTable 

End Sub 



 

Private Sub CleanFormattingParagraphEndings() 

    With Selection.Find 

        .ClearFormatting 

        'Target 

        .Text = "^p" 

        'Replacement 

        .Replacement.ClearFormatting 

        .Replacement.Font.bold = False 

        .Replacement.Font.italic = False 

        .Replacement.Font.underline = wdUnderlineNone 

        .Replacement.Font.Name = "Arial" 

        .Replacement.Text = "^p" 

        'Options 

        .Wrap = wdFindContinue 

        .Format = True 

        .MatchCase = False 

        .MatchWholeWord = True 

        .MatchWildcards = False 

        .MatchSoundsLike = False 

        .MatchAllWordForms = False 

    End With 

    Selection.Find.Execute Replace:=wdReplaceAll 

End Sub 

 

Private Sub ConvertHeading(twikiCode As String, heading As WdBuiltinStyle) 

    Dim normalStyle As style 

    Set normalStyle = ActiveDocument.Styles(wdStyleNormal) 

 

    ActiveDocument.Select 

 

    With Selection.Find 

 

        .ClearFormatting 

        .style = ActiveDocument.Styles(heading) 

        .Text = "" 

 

        .Format = True 

        .MatchCase = False 

        .MatchWholeWord = False 

        .MatchWildcards = False 

        .MatchSoundsLike = False 

        .MatchAllWordForms = False 

 

        .Forward = True 

        .Wrap = wdFindContinue 

 

        Do While .Execute 

            With Selection 

                If InStr(1, .Text, vbCr) Then 

                    ' Just process the chunk before any newline characters 

                    ' We'll pick-up the rest with the next search 

                    .Collapse 

                    .MoveEndUntil vbCr 

                End If 

 

                ' Don't bother to markup newline characters (prevents a loop, as well) 



                If Not .Text = vbCr Then 

                    .InsertBefore twikiCode + " " 

                End If 

 

                .style = normalStyle 

            End With 

        Loop 

    End With 

End Sub 

 

Private Sub ConvertStyle(twikiCode1 As String, Optional twikiCode2 As String, Optional bold As Boolean = 

False, Optional italic As Boolean = False, Optional underline As WdUnderline = wdUndefined, Optional fontName 

As String = "") 

'This function converts styled text in Word to TWiki markup 

' 

'This function also solves the problem that if a word is in a style, 

'and the trailing space is also in that style, then 

'a space will be placed before the trailing wikiCode causing the 

'effect to be ignored when first posted to TWiki. 

' 

'This is what this function does: 

'-------------------------------- 

'Insert new tags 

'Remove all 'loose' formatted spaces 

'Remove leading spaces 

'Remove trailing spaces 

'Add missing spaces before 

'Add missing spaces after 

'Remove the inserted tags and replace by TWiki tags 

 

    With Selection.Find 

        .ClearFormatting 

        .Replacement.ClearFormatting 

        .MatchSoundsLike = False 

        .MatchAllWordForms = False 

        .Forward = True 

        .Wrap = wdFindContinue 

    End With 

 

'Insert new tags 

'   * find: (empty) Formatted:Style 

'   * repl: <TWikiStyle>^&</TWikiStyle> Formatted:NotStyle 

    With Selection.Find 

        .Font.bold = bold 

        .Font.italic = italic 

        .Font.underline = underline 

        .Font.Name = fontName 

        .Text = "" 

        .Replacement.Text = "<TWikiStyle>^&</TWikiStyle>" 

        .Replacement.Font.bold = False 

        .Replacement.Font.italic = False 

        .Replacement.Font.underline = wdUnderlineNone 

        .Format = True 

        .MatchCase = False 

        .MatchWholeWord = False 

        .MatchWildcards = False 

    End With 



    Selection.Find.Execute Replace:=wdReplaceAll 

 

'Remove all 'loose' formatted spaces 

'   * find: <TWikiStyle> </TWikiStyle> 

'   * repl: (empty) Formatting:None 

    With Selection.Find 

        .Text = "<TWikiStyle> </TWikiStyle>" 

        .Replacement.Text = "" 

        .Format = False 

        .MatchCase = False 

        .MatchWholeWord = False 

        .MatchWildcards = False 

    End With 

    Selection.Find.Execute Replace:=wdReplaceAll 

 

'Remove leading spaces 

'   * find: \<TWikiStyle\>( @)<  (with wildcards) 

'   * repl: <TWikiStyle> 

    With Selection.Find 

        .Text = "\<TWikiStyle\>( @)<" 

        .Replacement.Text = "<TWikiStyle>" 

        .Format = False 

        .MatchCase = False 

        .MatchWholeWord = False 

        .MatchWildcards = True 

    End With 

    Selection.Find.Execute Replace:=wdReplaceAll 

'Remove trailing spaces 

'   * find: (>)( @)(\</TWikiStyle\>)  (with wildcards) 

'   * repl: </TWikiStyle> 

    With Selection.Find 

        .Text = "(>)( @)(\</TWikiStyle\>)" 

        .Replacement.Text = "</TWikiStyle>" 

        .Format = False 

        .MatchCase = True 

        .MatchWholeWord = True 

        .MatchWildcards = True 

    End With 

    Selection.Find.Execute Replace:=wdReplaceAll 

'Add missing spaces before 

'   * find: (>)\<TWikiStyle\>  (with wildcards) 

'   * repl: \1 <TWikiStyle> 

    With Selection.Find 

        .Text = "(>)\<TWikiStyle\>" 

        .Replacement.Text = "\1 <TWikiStyle>" 

        .Format = False 

        .MatchCase = True 

        .MatchWholeWord = True 

        .MatchWildcards = True 

    End With 

    Selection.Find.Execute Replace:=wdReplaceAll 

'Add missing spaces after 

'   * find: \</TWikiStyle\>(<)  (with wildcards) 

'   * repl: </TWikiStyle> \1 

    With Selection.Find 

        .Text = "\</TWikiStyle\>(<)" 

        .Replacement.Text = "</TWikiStyle> \1" 



        .Format = False 

        .MatchCase = True 

        .MatchWholeWord = True 

        .MatchWildcards = True 

    End With 

    Selection.Find.Execute Replace:=wdReplaceAll 

'Remove the inserted tags and replace by TWiki tags 

'   * find: \<TWikiStyle\>(*)\</TWikiStyle\>   (with wildcards) 

'   * repl: twikiCode\1twikiCode 

    With Selection.Find 

        .Text = "\<TWikiStyle\>(*)\</TWikiStyle\>" 

        .Replacement.Text = twikiCode1 + "\1" + IIf(twikiCode2 = "", twikiCode1, twikiCode2) 

        .Format = True 

        .MatchCase = True 

        .MatchWholeWord = True 

        .MatchWildcards = True 

    End With 

    Selection.Find.Execute Replace:=wdReplaceAll 

 

End Sub 

 

Private Sub ConvertHyperlinks() 

    Dim hyperCount As Integer 

 

    hyperCount = ActiveDocument.Hyperlinks.Count 

 

    For i = 1 To hyperCount 

        With ActiveDocument.Hyperlinks(1) 

            Dim addr As String 

            addr = .Address 

            text2disp = .TextToDisplay 

            .Delete 

            .Range.InsertBefore "[[" & addr & "][" 

            .Range.InsertAfter "]]" 

            '.Range.InsertBefore "[[" 

            '.Range.InsertAfter "|" & addr & "]]" 

        End With 

    Next i 

End Sub 

 

Private Sub ConvertLists() 

    Dim para As Paragraph 

    For Each para In ActiveDocument.ListParagraphs 

        With para.Range 

            If .ListFormat.ListType = wdListBullet Then 

                .InsertBefore "   * " 

            Else 

                .InsertBefore "   1. " 

            End If 

 

            For x = 2 To .ListFormat.ListLevelNumber 

                .InsertBefore "   " 

            Next x 

 

            .ListFormat.RemoveNumbers 

        End With 

    Next para 



End Sub 

 

Private Sub WikiSaveAsHTMLAndConvertImages() 

    Dim s As Shape 

    For Each s In ActiveDocument.Shapes 

        If s.Type = msoPicture Then 

            s.ConvertToInlineShape 

        End If 

    Next 

 

 

    FileName = ActiveDocument.Path + "\" + ActiveDocument.Name 

    FolderName = FileName + "_files" 

 

    ActiveDocument.SaveAs FileName:=FileName + ".htm", _ 

                  FileFormat:=wdFormatFilteredHTML, LockComments:=False, Password:="", _ 

                  AddToRecentFiles:=True, WritePassword:="", ReadOnlyRecommended:=False, _ 

                  EmbedTrueTypeFonts:=False, SaveNativePictureFormat:=False, SaveFormsData _ 

                  :=False, SaveAsAOCELetter:=False 

 

    Set fs = CreateObject("Scripting.FileSystemObject") 

    If fs.FolderExists(FolderName) Then 

        Set f = fs.GetFolder(FolderName) 

 

        Dim iShape As InlineShape 

        Dim sA As String, sB As String, sC As String, sD As String 

 

        sA = "<img src=" 

        sB = "%ATTACHURL%/" 

        sC = "></img>" 

        'sD = sA & sB & """" & "myimage.jpg" & """" & sC 

        Set fc = f.Files 

        i = 1 

        For Each f In fc 

            If i <= ActiveDocument.InlineShapes.Count Then 

                Set iShape = ActiveDocument.InlineShapes.Item(i) 

                iShape.Range.InsertBefore sA & """" & sB & f.Name & """" & sC 

                i = i + 1 

            End If 

        Next 

 

        Shell "explorer.exe " + FileName + "_files", vbNormalFocus 

    End If 

End Sub 

 

 

 

 

 

 

 

 

 

 

 

============================================ 

 



 

Sub WikiSwitch() 

  Set rng = ActiveDocument.Range 

  With rng.Find 

    .Text = "=" & "=^p" 

    .Execute 

  End With 

 

  If rng.Find.Found = True Then 

    Call WikiToStyles 

  Else 

    Call WikiToText 

  End If 

 

  Selection.HomeKey Unit:=wdStory 

 

End Sub 

Sub WikiToText() 

Dim Eq2, Eq3, Tk2, Tk3, pr, npr As String 

Eq2 = "=" & "=": Eq3 = Eq2 + "=" 

Tk2 = "'" & "'": Tk3 = Tk2 + "'" 

pr = "pre": npr = "</" & pr & ">" 

pr = "<" & pr & ">" 

 

'Convert Heading 2 to <=><=><=>Title<=><=><=> 

  Set rng = ActiveDocument.Range 

  With rng.Find 

    .ClearFormatting 

    .Replacement.ClearFormatting 

    .MatchWildcards = True 

    .Text = "(*)^13" 

    .Style = "Heading 2" 

    .Replacement.Text = Eq3 & "\1" & Eq3 & "^p" 

    .Replacement.Style = "Normal" 

    .Execute Replace:=wdReplaceAll 

  End With 

 

'Convert Heading 1 to <=><=>Title<=><=> 

  Set rng = ActiveDocument.Range 

  With rng.Find 

    .MatchWildcards = True 

    .Text = "(*)^13" 

    .Format = True 

    .Style = "Heading 1" 

    .Replacement.Text = Eq2 & "\1" & Eq2 & "^p" 

    .Replacement.Style = "Normal" 

    .Execute Replace:=wdReplaceAll 

  End With 

 

'Convert Bold to <'><'><'>word<'><'><'> 

  more = True 

  Do 

    Set rng = ActiveDocument.Range 

    With rng.Find 

      .Text = "" 

      .Font.Bold = True 

      .Execute 



    End With 

    more = rng.Find.Found 

    If more = True Then 

      rng.Font.Bold = False 

      rng.InsertBefore Tk3 

      rng.InsertAfter Tk3 

    End If 

  Loop Until more = False 

 

'Convert Italic to <'><'>word<'><'> 

  more = True 

  Do 

    Set rng = ActiveDocument.Range 

    With rng.Find 

      .Text = "" 

      .Font.Italic = True 

      .Execute 

    End With 

    more = rng.Find.Found 

    If more = True Then 

      rng.Font.Italic = False 

      rng.InsertBefore Tk2 

      rng.InsertAfter Tk2 

    End If 

  Loop Until more = False 

 

'Convert HTML sample to [pre]word[/pre] 

  gogo = True 

  Do 

    Set rng = ActiveDocument.Range 

    With rng.Find 

      .Style = "HTML Sample" 

      .Execute 

    End With 

    myStart = rng.Start 

    myEnd = rng.End 

    gogo = rng.Find.Found 

 

    If gogo = True Then 

    Set rng = ActiveDocument.Range 

    rng.Start = myEnd 

    With rng.Find 

      .Style = "Default Paragraph Font" 

      .Execute 

    End With 

    myEnd = rng.Start 

 

    rng.Start = myStart 

    rng.End = myEnd 

    rng.Style = "Default Paragraph Font" 

 

    rng.InsertBefore pr & vbCrLf 

    rng.InsertAfter npr & vbCrLf 

    End If 

 

  Loop Until gogo = False 

 



  Set rng = ActiveDocument.Range 

    With rng.Find 

      .MatchWildcards = False 

      .Text = "^p^p" & npr 

      .Replacement.Text = "^p" & npr & "^p" 

      .Execute Replace:=wdReplaceAll 

    End With 

 

 

 End Sub 

Sub WikiToStyles() 

Dim Eq2, Eq3 As String 

Eq2 = "=" & "=": Eq3 = Eq2 + "=" 

Tk2 = "'" & "'": Tk3 = Tk2 + "'" 

pr = "pre": npr = "</" & pr & ">" 

pr = "<" & pr & ">" 

 

'Convert <=><=><=>Title<=><=><=> to Heading 2 

  Dim rng As Range 

  Set rng = ActiveDocument.Range 

  With rng.Find 

    .MatchWildcards = True 

    .Text = Eq3 & "(*)" & Eq3 & "^13" 

    .Replacement.Text = "\1^p" 

    .Replacement.Style = "Heading 2" 

    .Execute Replace:=wdReplaceAll 

  End With 

 

'Convert <=><=>Title<=><=> to Heading 1 

  Set rng = ActiveDocument.Range 

  With rng.Find 

    .MatchWildcards = True 

    .Text = Eq2 & "(*)" & Eq2 & "^13" 

    .Replacement.Text = "\1^p" 

    .Replacement.Style = "Heading 1" 

    .Execute Replace:=wdReplaceAll 

  End With 

 

'Convert <'><'><'>word<'><'><'> to Bold 

  Set rng = ActiveDocument.Range 

  With rng.Find 

    .MatchWildcards = True 

    .Text = Tk3 & "(*)" & Tk3 

    .Replacement.Text = "\1" 

    .Replacement.Font.Bold = True 

    .Execute Replace:=wdReplaceAll 

  End With 

 

'Convert <'><'>word<'><'> to Italic 

  Set rng = ActiveDocument.Range 

  With rng.Find 

    .MatchWildcards = True 

    .Text = Tk2 & "(*)" & Tk2 

    .Replacement.Text = "\1" 

    .Replacement.Font.Italic = True 

    .Execute Replace:=wdReplaceAll 

  End With 



 

'Convert [pre]section[/pre] to HTML sample 

  Do 

    Set rng = ActiveDocument.Range 

    fileEnd = rng.End 

    With rng.Find 

      .MatchWildcards = False 

      .Text = "^p" & pr & "^p" 

      .Replacement.Text = "^p" 

      .Execute Replace:=wdReplaceOne 

    End With 

    codeStart = rng.End 

 

    If rng.End <> fileEnd Then 

      Set rng = ActiveDocument.Range 

      With rng.Find 

        .MatchWildcards = False 

        .Text = "^p" & npr & "^p" 

        .Replacement.Text = "^p" 

        .Execute Replace:=wdReplaceOne 

      End With 

      codeEnd = rng.End 

      rng.Start = codeStart 

      rng.Style = "HTML Sample" 

    End If 

  Loop Until rng.End = fileEnd 

 

End Sub 

 

Sub prime() 

Selection.InsertSymbol CharacterNumber:=8242, Unicode:=True 

' Or just use insert character 2032 (hex version of 8242). 

End Sub 

Sub primeDouble() 

Selection.InsertSymbol CharacterNumber:=8243, Unicode:=True 

' Or just use insert character 2033 (hex version of 8243). 

 

End Sub 

 

Sub PhraseCount() 

   caseSensitive = True 

 ' Hide the hyphens 

   Dim rng As Range 

   Set rng = ActiveDocument.Range 

   With rng.Find 

      .ClearFormatting 

      .MatchCase = False 

      .MatchWildcards = False 

      .Text = "-" 

      .Replacement.Text = "zczc" 

      .Execute Replace:=wdReplaceAll 

   End With 

 

 ' Find beginning of phrase list 

   Selection.HomeKey Unit:=wdStory 

   With Selection.Find 

       .ClearFormatting 



       .Text = "......^p" 

       .MatchWildcards = False 

       .Execute 

   End With 

   Selection.Collapse wdCollapseEnd 

   listStart = Selection.End 

 

   totAltotal = 0 

   diffWords = 0 

   myPhrase = "something" 

   Do While Asc(myPhrase) > 13 

    ' Select the next phrase 

      With Selection.Find 

        .ClearFormatting 

        .MatchWildcards = True 

        .Text = "*^13" 

        .Execute 

      End With 

 

      Selection.End = Selection.End - 1 

      myPhrase = Selection 

 

      If Asc(myPhrase) > 13 Then 

       ' Prepare to find the phrase 

         Set rng = ActiveDocument.Range 

         With rng.Find 

            .ClearFormatting 

            If caseSensitive = False Then 

               .MatchCase = False 

            Else 

               .MatchCase = True 

            End If 

            .MatchWholeWord = True 

            .MatchWildcards = False 

            .Text = myPhrase 

            .Execute 

         End With 

 

      ' Count the no. of occurrences 

        WordsTotal = 0 

        Do 

           WordsTotal = WordsTotal + 1 

           rng.Find.Execute 

        Loop Until rng.End > listStart 

      ' Type frequency figure next to the phrase 

        Selection.Collapse wdCollapseEnd 

        Selection.TypeText Text:=vbTab & Str(WordsTotal) 

        Selection.MoveRight Unit:=wdCharacter, Count:=1 

      ' Update totals 

        totAltotal = totAltotal + WordsTotal 

        diffWords = diffWords + 1 

     End If 

 

   Loop 

 

 ' Restore the hyphens 

   Set rng = ActiveDocument.Range 



   With rng.Find 

      .ClearFormatting 

      .MatchCase = False 

      .MatchWildcards = False 

      .Text = "zczc" 

      .Replacement.Text = "-" 

      .Execute Replace:=wdReplaceAll 

   End With 

 

   Selection.TypeText Text:=vbCrLf & "Words counted = " & _ 

   Str(totAltotal) & vbCrLf & "Different words =" & Str(diffWords) 

 

End Sub 

 

 

 

 

Sub WikiConvert() 

' I don't think this is used for anything (30.11.09). Is it?! 

 

 With Selection.Find 

   .ClearFormatting 

   .Replacement.ClearFormatting 

   .Text = "" 

   .Font.Size = 18 

   .Replacement.Text = "==^&zz" 

   .Replacement.Font.Bold = False 

   .Wrap = wdFindContinue 

   .MatchWildcards = True 

   .Format = True 

 End With 

 Selection.Find.Execute Replace:=wdReplaceAll 

 

 With Selection.Find 

   .ClearFormatting 

   .Replacement.ClearFormatting 

   .Text = "" 

   .Font.Size = 14 

   .Replacement.Text = "===^&zzz" 

   .Replacement.Font.Bold = False 

   .Wrap = wdFindContinue 

   .MatchWildcards = True 

   .Format = True 

 End With 

 Selection.Find.Execute Replace:=wdReplaceAll 

 

 With Selection.Find 

   .ClearFormatting 

   .Replacement.ClearFormatting 

   .Text = "" 

   .Font.Bold = True 

   .Replacement.Text = "'''^&'''" 

   .Wrap = wdFindContinue 

   .MatchWildcards = True 

   .Format = True 

 End With 

 Selection.Find.Execute Replace:=wdReplaceAll 



 

 With Selection.Find 

   .ClearFormatting 

   .Replacement.ClearFormatting 

   .Text = "" 

   .Font.Italic = True 

   .Replacement.Text = "''^&''" 

   .Wrap = wdFindContinue 

   .MatchWildcards = True 

   .Format = True 

 End With 

 Selection.Find.Execute Replace:=wdReplaceAll 

 

 With Selection.Find 

   .ClearFormatting 

   .Replacement.ClearFormatting 

   .Text = "^pzzz" 

   .Replacement.Text = "===^p" 

   .Wrap = wdFindContinue 

   .MatchWildcards = False 

   .Format = True 

 End With 

 Selection.Find.Execute Replace:=wdReplaceAll 

 

 With Selection.Find 

   .ClearFormatting 

   .Replacement.ClearFormatting 

   .Text = "^pzz" 

   .Replacement.Text = "==^p" 

   .Wrap = wdFindContinue 

   .MatchWildcards = False 

   .Format = True 

 End With 

 Selection.Find.Execute Replace:=wdReplaceAll 

 

End Sub 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To: <SfEPLine@yahoogroups.com> 



Date: Wed, 21 Oct 2009 09:30:39 +0100 

Subject: RE: [SfEPLine] Re: TextStat help, please 

 

Paul wrote: 

 

 

 

Sorry to have caused confusion: it's TextAnal that we're now asking about 

on Vista, not TextStat - though I can't see why a macro should be 

affected by the operating system. 

 

Maybe it's the version of Word, Davina (who it was that asked the question 

originally)? I do know we had a minor hiccup with FRedit not working 

on the Mac version of Word. 

 

I was the person who raised the query about TextStat initially (and, Paul, 

may I make a plea for a change of your macro's name to TextAnalysis, 

please?). In offline correspondence with Davina, we've established that I 

need to download the version of TextStat from Softpedia (the link that Paul 

gives for Vista users). The version that I downloaded from Matthias 

Huening's website (http://neon.niederlandistik.fu-berlin.de/textstat/) seems 

to be different, and, looking at the Softpedia details (which has the name 

of another developer), I'm wondering whether they are entirely different 

programs with the same name, hence the confusion. My problem was that I 

don't have a File menu on the top left as many of you do (only an Export 

menu, which won't give me a text file), so all the helpful suggestions from 

those who replied to my query (thank you!) don't help at the moment. I'm 

going to download the Softpedia version now and see how it goes. 

 

 

 

Best wishes 

 

Jacqueline 

 

 

 

Date: Wed, 21 Oct 2009 09:50:14 +0100 

Subject: RE: [SfEPLine] Re: TextStat help, please 

 

Problem solved. The program on 

http://www.softpedia.com/progDownload/TextStat-Download-44558.html 

<http://www.softpedia.com/progDownload/TextStat-Download-44558.html%20is%20T 

extStat%203.0>  is TextStat 3.0, developed by Lionel Allorge, whereas that 

on http://neon.niederlandistik.fu-berlin.de/textstat/ is TextSTAT, developed 

by Matthias Huening. They are different programs. The first is not simply a 

driver for Vista; both work on Vista, but I had problems getting TextSTAT to 

export a list in other than an Excel format. Has anyone actually used 

TextSTAT successfully with Paul's macro? 

 

 

 

Best wishes 

 

Jacqueline 

 

 



 

 

 

 

============================================ 

 

 

============================================ 

 

Trim(MyText) takes spaces off the ends of the string. 

Ltrim and Rtrim take spaces of one or other end. 

 

 

Sub AllLowerCase() 

' 

' Macro2 Macro 

' Macro recorded 2/2/2008 by Paul Beverley 

' 

    Selection.Range.Case = wdLowerCase 

End Sub 

 

 

Sub NewComment() 

' 

' Macro1 Macro 

' Macro recorded 2/7/2008 by Paul Beverley 

' 

    WordBasic.InsertNewComment 

End Sub 

 

 

Sub PrepToFind() 

' 

' Macro recorded 2/9/2008 by Paul Beverley 

' 

    Dim MyData As DataObject 

    Dim strClip As String 

 

    Set MyData = New DataObject 

    MyData.GetFromClipboard 

    strClip = MyData.GetText 

    Selection.Find.ClearFormatting 

    Selection.Find.Replacement.ClearFormatting 

    With Selection.Find 

        .Text = strClip 

        .Replacement.Text = strClip 

        .Forward = True 

        .Wrap = wdFindAsk 

        .Format = False 

        .MatchCase = False 

        .MatchWholeWord = False 

        .MatchWildcards = False 

        .MatchSoundsLike = False 

        .MatchAllWordForms = False 

    End With 

    ShowVisualBasicEditor = True 

    CommandBars("Stop Recording").Visible = False 



End Sub 

Sub AdditInfo() 

' 

' Macro2 Macro 

' Macro recorded 2/12/2008 by Paul Beverley 

' 

    Selection.TypeText Text:="az1" 

    Selection.MoveRight Unit:=wdCell 

    Selection.MoveRight Unit:=wdCell 

    Selection.TypeText Text:="az2" 

    Selection.MoveRight Unit:=wdCell 

    Selection.MoveRight Unit:=wdCell 

    Selection.TypeText Text:="az3" 

    Selection.MoveRight Unit:=wdCell 

    Selection.MoveRight Unit:=wdCell 

    Selection.TypeText Text:="az4" 

    Selection.MoveRight Unit:=wdCell 

    Selection.MoveRight Unit:=wdCell 

    Selection.TypeText Text:="az5" 

    Selection.MoveRight Unit:=wdCell 

    Selection.MoveRight Unit:=wdCell 

    Selection.TypeText Text:="az6" 

    Selection.MoveRight Unit:=wdCell 

    Selection.MoveRight Unit:=wdCell 

    Selection.TypeText Text:="az7" 

    Selection.MoveRight Unit:=wdCell 

    Selection.MoveRight Unit:=wdCell 

    Selection.TypeText Text:="az8" 

    Selection.MoveRight Unit:=wdCell 

    Selection.MoveRight Unit:=wdCell 

    Selection.TypeText Text:="az9" 

    Selection.MoveRight Unit:=wdCell 

    Selection.MoveRight Unit:=wdCell 

    Selection.TypeText Text:="az10" 

End Sub 

Sub NumTabTwo() 

' 

' Macro2 Macro 

' Macro recorded 2/12/2008 by Paul Beverley 

' 

    Selection.HomeKey Unit:=wdLine 

    Selection.MoveRight Unit:=wdCharacter, Count:=4 

    Selection.Delete Unit:=wdCharacter, Count:=1 

    Selection.TypeText Text:=vbTab 

    Selection.MoveRight Unit:=wdCharacter, Count:=1, Extend:=wdExtend 

    Selection.Range.Case = wdLowerCase 

End Sub 

Sub NumTabOne() 

' 

' Macro2 Macro 

' Macro recorded 2/12/2008 by Paul Beverley 

' 

    Selection.HomeKey Unit:=wdLine 

    Selection.MoveRight Unit:=wdCharacter, Count:=3 

    Selection.Delete Unit:=wdCharacter, Count:=1 

    Selection.TypeText Text:=vbTab 

    Selection.MoveRight Unit:=wdCharacter, Count:=1, Extend:=wdExtend 



    Selection.Range.Case = wdLowerCase 

End Sub 

Sub TabOneWord() 

' 

' Macro3 Macro 

' Macro recorded 2/12/2008 by Paul Beverley 

' 

    Selection.HomeKey Unit:=wdLine 

    Selection.MoveRight Unit:=wdCharacter, Count:=1, Extend:=wdExtend 

    Selection.Range.Case = wdLowerCase 

    Selection.HomeKey Unit:=wdLine 

    Selection.TypeText Text:=vbTab 

    Selection.MoveRight Unit:=wdWord, Count:=2 

    Selection.MoveRight Unit:=wdCharacter, Count:=1, Extend:=wdExtend 

    Selection.Range.Case = wdLowerCase 

End Sub 

Sub TabTwoWords() 

' 

' Macro4 Macro 

' Macro recorded 2/12/2008 by Paul Beverley 

' 

    Selection.HomeKey Unit:=wdLine 

    Selection.MoveRight Unit:=wdCharacter, Count:=1, Extend:=wdExtend 

    Selection.Range.Case = wdLowerCase 

    Selection.HomeKey Unit:=wdLine 

    Selection.TypeText Text:=vbTab 

    Selection.MoveRight Unit:=wdWord, Count:=3 

    Selection.MoveRight Unit:=wdCharacter, Count:=1, Extend:=wdExtend 

    Selection.Range.Case = wdLowerCase 

End Sub 

 

Sub TabThreeWords() 

' 

' Macro4 Macro 

' Macro recorded 2/12/2008 by Paul Beverley 

' 

    Selection.HomeKey Unit:=wdLine 

    Selection.MoveRight Unit:=wdCharacter, Count:=1, Extend:=wdExtend 

    Selection.Range.Case = wdLowerCase 

    Selection.HomeKey Unit:=wdLine 

    Selection.TypeText Text:=vbTab 

    Selection.MoveRight Unit:=wdWord, Count:=4 

    Selection.MoveRight Unit:=wdCharacter, Count:=1, Extend:=wdExtend 

    Selection.Range.Case = wdLowerCase 

End Sub 

 

Sub KnowHowTo() 

' 

' KnowHowTo Macro 

' Macro recorded 2/13/2008 by Paul Beverley 

' 

    Selection.HomeKey Unit:=wdLine 

    Selection.MoveRight Unit:=wdCharacter, Count:=3 

    Selection.TypeText Text:="know how to " 

    Selection.MoveRight Unit:=wdCharacter, Count:=1, Extend:=wdExtend 

    Selection.Range.Case = wdLowerCase 

End Sub 



Sub ColonPullUp() 

' 

' ColonPullUp Macro 

' Macro recorded 2/13/2008 by Paul Beverley 

' 

    Selection.EndKey Unit:=wdLine 

    Selection.TypeText Text:=": " 

    Selection.Delete Unit:=wdCharacter, Count:=1 

    Selection.MoveRight Unit:=wdCharacter, Count:=1, Extend:=wdExtend 

    Selection.Range.Case = wdLowerCase 

End Sub 

 

Sub SearchReplaceCall() 

    Selection.MoveRight Unit:=wdCharacter, Count:=1 

    SendKeys ("^h") 

    SendKeys ("^v") 

    SendKeys ("{TAB}") 

    SendKeys ("^v") 

End Sub 

 

 

Sub FindHighlight() 

 

' FindHighlight Macro 

' Macro recorded 14/01/2009 by Christine Vaughan 

' This macro finds any text highlighted in red and changes 

' its text colour into red, while removing the highlighting. 

 

    Selection.HomeKey Unit:=wdStory 

    Selection.Find.ClearFormatting 

    Selection.Find.Highlight = True 

    Selection.Find.Execute 

    While Selection.Find.Found = True 

    If Selection.Range.HighlightColorIndex = wdRed Then 

    Selection.Range.Font.Color = wdColorRed 

    Selection.Range .HighlightColorIndex = False 

    Selection.MoveLeft Unit:=wdCharacter, Count:=1 

    End If 

    Selection.Find.ClearFormatting 

    Selection.Find.Highlight = True 

    Selection.Find.Execute 

    Wend 

    Selection.HomeKey Unit:=wdStory 

End Sub 

 

 

 

Sub WhatChar() 

' This doesn't do anything useful yet but it shows me how to check what the next character is. 

' Could be very useful!! 

 

  If Asc(Selection) = 145 Then Selection.TypeText Text:="•" 

End Sub 

 

 

Sub TabPara() 

' 



' Macro1 Macro 

' Macro recorded 10/29/2008 by P Beverley 

' Done for someone else: find all paras with a particular indent? 

 

    Selection.Find.ClearFormatting 

    With Selection.Find.ParagraphFormat 

        .SpaceBeforeAuto = False 

        .SpaceAfterAuto = False 

        .FirstLineIndent = CentimetersToPoints(1.27) 

        .CharacterUnitFirstLineIndent = 0 

    End With 

    Selection.Find.Replacement.ClearFormatting 

    With Selection.Find.Replacement.ParagraphFormat 

        .SpaceBeforeAuto = False 

        .SpaceAfterAuto = False 

        .FirstLineIndent = CentimetersToPoints(0) 

        .CharacterUnitFirstLineIndent = 0 

    End With 

    With Selection.Find 

        .Text = "" 

        .Replacement.Text = "^t^&" 

        .Forward = True 

        .Wrap = wdFindContinue 

        .Format = True 

        .MatchCase = False 

        .MatchWholeWord = False 

        .MatchWildcards = False 

        .MatchSoundsLike = False 

        .MatchAllWordForms = False 

    End With 

    Selection.Find.Execute Replace:=wdReplaceAll 

End Sub 

 

 

============================================ 

Sub WikiToStyles() 

 

  Selection.HomeKey Unit:=wdStory 

 

  With Selection.Find 

    .ClearFormatting 

    .Replacement.ClearFormatting 

    .MatchWildcards = True 

    .Text = "===(*)===^13" 

    .Replacement.Text = "\1^p" 

    .Replacement.Style = "Heading 3" 

    .Wrap = wdFindContinue 

    .Format = True 

  End With 

  Selection.Find.Execute Replace:=wdReplaceAll 

 

  With Selection.Find 

    .ClearFormatting 

    .Replacement.ClearFormatting 

    .MatchWildcards = True 

    .Text = "==(*)==^13" 

    .Replacement.Text = "\1^p" 



    .Replacement.Style = "Heading 1" 

    .Wrap = wdFindContinue 

    .Format = True 

  End With 

  Selection.Find.Execute Replace:=wdReplaceAll 

 

  With Selection.Find 

    .ClearFormatting 

    .Replacement.ClearFormatting 

    .MatchWildcards = True 

    .Text = "'''(*)'''" 

    .Replacement.Text = "\1" 

    .Replacement.Font.Bold = True 

    .Wrap = wdFindContinue 

    .Format = True 

  End With 

  Selection.Find.Execute Replace:=wdReplaceAll 

 

 

  With Selection.Find 

    .ClearFormatting 

    .Replacement.ClearFormatting 

    .MatchWildcards = True 

    .Text = "''(*)''" 

    .Replacement.Text = "\1" 

    .Replacement.Font.Italic = True 

    .Wrap = wdFindContinue 

    .Format = True 

  End With 

  Selection.Find.Execute Replace:=wdReplaceAll 

 

 

  Selection.HomeKey Unit:=wdStory 

 

  With Selection.Find 

    .ClearFormatting 

    .Replacement.ClearFormatting 

    .MatchWildcards = False 

    .Text = "<pre>" 

  End With 

 

 

  Do While Selection.Find.Execute 

    Do 

      Selection.MoveDown Unit:=wdParagraph, Count:=1, Extend:=wdExtend 

    Loop Until InStr(Selection, "</pre>") 

    Selection.Style = "HTML Sample" 

    Selection.Collapse wdCollapseEnd 

  Loop 

 

  With Selection.Find 

    .ClearFormatting 

    .Replacement.ClearFormatting 

    .MatchWildcards = False 

    .Text = "<pre>^p" 

    .Replacement.Text = "" 

    .Wrap = wdFindContinue 



    .Format = True 

  End With 

  Selection.Find.Execute Replace:=wdReplaceAll 

 

  With Selection.Find 

    .ClearFormatting 

    .Replacement.ClearFormatting 

    .MatchWildcards = False 

    .Text = "^p</pre>" 

    .Replacement.Text = "" 

    .Wrap = wdFindContinue 

    .Format = True 

  End With 

  Selection.Find.Execute Replace:=wdReplaceAll 

 

 

End Sub 

 

 

============================================ 

Sub ListAllWords() 

   caseSensitive = False 

 ' Minimum length of word to be recorded 

   minWordLength = 1 

 ' (1 = all words, 2 = two-letter words and longer, etc) 

   Dim rng As Range, myWord As String 

   Set rng = ActiveDocument.Range 

 

 ' Hide the hyphens 

   With rng.Find 

      .ClearFormatting 

      .MatchCase = False 

      .MatchWildcards = False 

      .Text = "-" 

      .Replacement.Text = "zczc" 

      .Execute Replace:=wdReplaceAll 

   End With 

 

 ' Hide the close single curly quotes 

   Set rng = ActiveDocument.Range 

   With rng.Find 

      .ClearFormatting 

      .Text = "’" 

      .Replacement.Text = " ]{[}" 

      .Execute Replace:=wdReplaceAll 

   End With 

 

   Selection.EndKey Unit:=wdStory 

   ' Make sure list is in Normal style 

   Selection.TypeParagraph 

   Selection.Range.Style = ActiveDocument.Styles(wdStyleNormal) 

   Selection.TypeText Text:="==========" & vbCrLf 

 

   ' Highlight just the text 

   Selection.WholeStory 

   Selection.End = Selection.End - 12 

   Selection.Range.HighlightColorIndex = wdYellow 



   Selection.EndKey Unit:=wdStory 

 

   gogo = True 

   Do While gogo = True 

    ' Find any highlighted word 

      Set rng = ActiveDocument.Range 

      With rng.Find 

         .ClearFormatting 

         .MatchWildcards = True 

         .Highlight = True 

         .Replacement.Highlight = False 

         .Text = "<*>" 

         .Execute Replace:=wdReplaceOne 

      End With 

 

    ' Did you find a highlighted word? 

      gogo = rng.Find.Found 

    ' If so, unhighlight all occurrences of that word 

      If gogo = True Then 

         myWord = rng 

         Set rng = ActiveDocument.Range 

         With rng.Find 

            .ClearFormatting 

            .Replacement.Highlight = False 

            .MatchWildcards = False 

            .MatchWholeWord = True 

            If caseSensitive = False Then 

               .MatchCase = False 

            Else 

               .MatchCase = True 

            End If 

            .Text = myWord 

            .Execute Replace:=wdReplaceAll 

         End With 

       ' force word to lower case 

         If caseSensitive = False Then 

            myWord = StrConv(myWord, vbLowerCase) 

         End If 

       ' Add the word to the list 

         If Len(myWord) > minWordLength - 1 Then 

            Selection.TypeText Text:=myWord & vbCrLf 

         End If 

      End If 

   Loop 

 

   Selection.WholeStory 

   Selection.Range.HighlightColorIndex = wdNoHighlight 

 

 ' Restore the hyphens 

   Set rng = ActiveDocument.Range 

   With rng.Find 

      .ClearFormatting 

      .MatchCase = False 

      .MatchWildcards = False 

      .Text = "zczc" 

      .Replacement.Text = "-" 

      .Execute Replace:=wdReplaceAll 



   End With 

 

 ' Restore the close single curly quotes 

   Set rng = ActiveDocument.Range 

   With rng.Find 

      .ClearFormatting 

      .Text = " ]{[}" 

      .Replacement.Text = "’" 

      .Execute Replace:=wdReplaceAll 

   End With 

 

 ' Find beginning of word list 

   Selection.HomeKey Unit:=wdStory 

   With Selection.Find 

      .ClearFormatting 

      .Text = "=====^p" 

      .MatchWildcards = False 

      .Execute 

   End With 

 

 ' Select the word list and sort it alphabetically 

   listStart = Selection.End 

   Selection.EndKey Unit:=wdStory 

   Selection.Start = listStart 

   Selection.Sort 

   Selection.End = Selection.Start 

 

End Sub 

 

Sub WordFrequency() 

  Call ListAllWords 

  Call PhraseCount 

End Sub 

 

Sub PhraseCount() 

   caseSensitive = False 

 ' Hide the hyphens 

   Dim rng As Range 

   Set rng = ActiveDocument.Range 

   With rng.Find 

      .ClearFormatting 

      .MatchCase = False 

      .MatchWildcards = False 

      .Text = "-" 

      .Replacement.Text = "zczc" 

      .Execute Replace:=wdReplaceAll 

   End With 

 

 ' Find beginning of phrase list 

   Selection.HomeKey Unit:=wdStory 

   With Selection.Find 

       .ClearFormatting 

       .Text = "=====^p" 

       .MatchWildcards = False 

       .Execute 

   End With 

   Selection.Collapse wdCollapseEnd 



   listStart = Selection.End 

 

   totaltotal = 0 

   diffWords = 0 

   myPhrase = "something" 

   Do While Asc(myPhrase) > 13 

    ' Select the next phrase 

      With Selection.Find 

        .ClearFormatting 

        .MatchWildcards = True 

        .Text = "*^13" 

        .Execute 

      End With 

 

      Selection.End = Selection.End - 1 

      myPhrase = Selection 

 

      If Asc(myPhrase) > 13 Then 

       ' Prepare to find the phrase 

         Set rng = ActiveDocument.Range 

         With rng.Find 

            .ClearFormatting 

            If caseSensitive = False Then 

               .MatchCase = False 

            Else 

               .MatchCase = True 

            End If 

            .MatchWholeWord = True 

            .MatchWildcards = False 

            .Text = myPhrase 

            .Execute 

         End With 

 

      ' Count the no. of occurrences 

        WordsTotal = 0 

        Do 

           WordsTotal = WordsTotal + 1 

           rng.Find.Execute 

        Loop Until rng.End > listStart 

      ' Type frequency figure next to the phrase 

        Selection.Collapse wdCollapseEnd 

        Selection.TypeText Text:=vbTab & Str(WordsTotal) 

        Selection.MoveRight Unit:=wdCharacter, Count:=1 

      ' Update totals 

        totaltotal = totaltotal + WordsTotal 

        diffWords = diffWords + 1 

     End If 

 

   Loop 

 

 ' Restore the hyphens 

   Set rng = ActiveDocument.Range 

   With rng.Find 

      .ClearFormatting 

      .MatchCase = False 

      .MatchWildcards = False 

      .Text = "zczc" 



      .Replacement.Text = "-" 

      .Execute Replace:=wdReplaceAll 

   End With 

 

   MsgBox ("Words counted = " & Str(totaltotal) & vbCrLf & _ 

   "Different words =" & Str(diffWords)) 

 

End Sub 

 

 

 

 

 

 

============================================ 

 

 

============================================ 

 

 

============================================ 

 

Proper case-sensitive sorting 

 

  With Selection.Find 

    .ClearFormatting 

    .Replacement.ClearFormatting 

    .Text = " @([A-Z])" 

    .Replacement.Text = "!!!\1" 

    .Forward = True 

    .Wrap = wdFindContinue 

    .Format = False 

    .MatchWildcards = True 

  End With 

  Selection.Find.Execute Replace:=wdReplaceAll 

 

  Selection.WholeStory 

  Selection.Sort 

 

  Selection.HomeKey Unit:=wdStory 

 

  With Selection.Find 

    .ClearFormatting 

    .Replacement.ClearFormatting 

    .Text = "!!!" 

    .Replacement.Text = "" 

    .Forward = True 

    .Wrap = wdFindContinue 

    .Format = False 

    .MatchWildcards = False 

  End With 

  Selection.Find.Execute Replace:=wdReplaceAll 

 

  With Selection.Find 

    .ClearFormatting 

    .Replacement.ClearFormatting 

    .Text = " @([a-z^0145^45])" 



    .Replacement.Text = "\1" 

    .Forward = True 

    .Wrap = wdFindContinue 

    .Format = False 

    .MatchWildcards = True 

  End With 

  Selection.Find.Execute Replace:=wdReplaceAll 

 

 

============================================ 

 

An example using on error 

error handling 

 

Sub Whatever() 

 

On Error GoTo ReportIt 

 

Dim MyText As String 

MyText = Selection 

 

Selection.MoveLeft Unit:=wdCharacter, Count:=1 

 

With Selection.Find 

  .ClearFormatting 

  .Replacement.ClearFormatting 

  .Text = Trim(MyText) 

  .Replacement.Text = Trim(MyText) 

  .Forward = True 

  .Wrap = wdFindContinue 

  .MatchWildcards = False 

  .MatchCase = True 

  .Format = True 

  .MatchAllWordForms = False 

End With 

Dialogs(wdDialogEditReplace).Show 

 

FinishHere: 

Exit Sub 

 

ReportIt: 

MsgBox Err.Description 

Resume FinishHere 

End Sub 

 

 

============================================ 

 

Playing with documents docs 

 

Sub UsefulBits() 

' 

' Macro1 Macro 

' Macro recorded 6/3/2009 by P Beverley 

' 

 

For Each aDOC In Documents 



    aname = aname & aDOC.Name & vbCr 

Next aDOC 

MsgBox aname 

 

 

 

Exit Sub 

 

For Each doc In Documents 

    If doc.Name = "Report.doc" Then Found = True 

Next doc 

If Found <> True Then 

    Documents.Open fileName:="C:\Documents\Report.doc" 

Else 

    Documents("Report.doc").Activate 

End If 

 

 

' Not useful?? 

  Documents(1).Activate 

  Set rng = ActiveDocument.Content 

  lengthOne = rng.End 

 

  Documents(2).Activate 

  Set rng = ActiveDocument.Content 

  lengthTwo = rng.End 

 

  If lengthTwo < lengthOne Then 

    Set theList = ActiveDocument 

    Documents(1).Activate 

    Set theText = ActiveDocument 

  Else 

    Set theText = ActiveDocument 

    Documents(1).Activate 

    Set theList = ActiveDocument 

  End If 

 

 

End Sub 

 

 

============================================ 

 

Spelling errors spell errors 

 

Dim sWord As String 

Dim oSource As Document 

Dim oTarget As Document 

Set oSource = ActiveDocument 

Set oTarget = Documents.Add 

For i = 1 To oSource.Words.Count 

    sWord = oSource.Words(i) 

    If CheckSpelling(sWord, IgnoreUppercase:=False) = False Then 

        oTarget.Range.InsertAfter sWord & vbCr 

    End If 

Next i 

With oTarget 



    .Range.End = .Range.End - 1 

    .Range.Sort 

    .Paragraphs(1).Range.Delete 

    .Activate 

End With 

 

 

============================================ 

 

An example showing how to do dialog boxes 

dialogue boxes 

 

Sub ReplaceWithSelect() 

' <alt-ctrl-H> 

 

Dim MyText As String 

MyText = Selection 

On Error GoTo ReportIt 

 

Selection.MoveLeft Unit:=wdCharacter, Count:=1 

 

With Dialogs(wdDialogEditReplace) 

  .Find = Trim(MyText) 

  .Replace = Trim(MyText) 

  .MatchCase = True 

  .Show 

End With 

FinishHere: 

Exit Sub 

 

ReportIt: 

 MsgBox Err.Description 

 Resume FinishHere 

End Sub 

 

 

============================================ 

 

The following example cuts the last paragraph of the first document in the Documents  collection and pastes it at 

the beginning of the second document. 

 

With Documents(1) 

    .Paragraphs.Last.Range.Select 

    .ActiveWindow.Selection.Cut 

End With 

 

With Documents(2).ActiveWindow.Selection 

    .StartOf Unit:=wdStory, Extend:=wdMove 

    .Paste 

End With 

 

 

============================================ 

 

 

 

 



Functions 

 

Sub test() 

' <ctrl-alt-shift-T> 

Dim aname$ 

 

aname$ = "hello" 

MsgBox (Reverse(aname$)) 

 

End Sub 

 

 

Function Reverse(nm As String) 

 

Temp$ = "" 

For i = 1 To Len(nm) 

Temp$ = Mid$(nm, i, 1) + Temp$ 

Next 

Reverse = Temp$ 

 

End Function 

 

============================================ 

 

 

 

============================================ 

 

 

 

============================================ 

 

 

 

============================================ 

 

 

 

============================================ 

 

 

 

============================================ 

 

 

 

============================================ 

 

 

 

============================================ 

 

 

 

 

Smart quotes on and off 

 



With Options 

   .AutoFormatAsYouTypeReplaceQuotes = True 

End With 

 

 

============================================ 

 

file search file find 

 

With Application.FileSearch 

    .FileName = "99*.*" 

    .LookIn = "C:\My Documents" 

    .Execute 

    For I = 1 to .FoundFiles.Count 

        MsgBox .FoundFiles(I) 

    Next I 

End With 

 

============================================ 

 

 

http://www.jojo-zawawi.com/code-samples-pages/code-samples.htm 

   Zawawi 

Zawawi 

Zawawi 

Word-VBA 

Code Samples 

                        by JoJo Zawawi 

 

There are lots of different ways to code something, depending on what you're trying to accomplish. Some ways 

may be efficient for one use but inefficient for another. The purpose of this listing is to show you various ways of 

coding the simple stuff that you can play with on your own and learn with. One of these days, I'm going to add 

some Sample Programs. Sorry — at the moment, I'm not able to answer questions. However, I highly recommend 

Allen Wyatt's Daily Word Tips e-mail list. You can contact Allen by way of his web site and request that you be 

added to the list. 

Search Now: 

 

 

In Association with Amazon.com 

 

 

      vba code samples 

For more stuff, visit the Home page   a    b    c    d 

Tax Help & Bookkeeping   e    f    g    h 

Word Processing & Transcription   i    j    k    l 

About Us   m    n    o    p 

    q    r    s    t 

    u    v    w    x 

    y    z   top 

 

Download the NUMBERING TEMPLATE. 

(Open the template for instructions on its use.) 

 

 

 

============================================ 

 



 

 

 

 

 

 

Remove all empty paragraphs from a document 

 

Article contributed by Dave Rado 

 

You can remove most empty paragraphs from a document by doing a wildcard Find & Replace. 

 

Replace: ^13{2,} with ^p, which (in theory – see below) replaces all occurrences of two or more consecutive 

paragraph marks with one paragraph mark. Or you can run the following macro, which does the same thing: 

 

With Selection.Find 

    .Text = "^13{2,}" 

    .Replacement.Text = "^p" 

    .Forward = True 

    .Wrap = wdFindContinue 

    .Format = False 

    .MatchCase = False 

    .MatchWholeWord = False 

    .MatchAllWordForms = False 

    .MatchSoundsLike = False 

    .MatchWildcards = True 

    .Execute Replace:=wdReplaceAll 

End With 

 

(Note that using Find and Replace is dramatically faster than cycling through the Paragraphs collection). 

 

However, you can't use Find & Replace to delete the first or last paragraph in the document, if they are empty. To 

delete them you would need to add the following code to the above macro: 

 

Dim MyRange As Range 

Set MyRange = ActiveDocument.Paragraphs(1).Range 

If MyRange.Text = vbCr Then MyRange.Delete 

 

Set MyRange = ActiveDocument.Paragraphs.Last.Range 

If MyRange.Text = vbCr Then MyRange.Delete 

 

In addition, you can't use Find & Replace to delete the paragraph immediately preceding or following any tables, if 

these are empty. You would need to add the following code to the macro if you want them deleted – but be careful; 

if two tables are separated only by an empty paragraph, the following code will merge them into one table, which 

may or may not be the result you wanted:1 

 

Dim oTable As Table, MyRange As Range 

 

For Each oTable In ActiveDocument.Tables 

    #If VBA6 Then 

        'The following is only compiled and run if Word 2000 or 2002 is in use 

        'It speeds up the table and your code 

        oTable.AllowAutoFit = False 

    #End If 

 

    'Set a range to the para following the current table 

     Set MyRange = oTable.Range 



    MyRange.Collapse wdCollapseEnd 

    'if para after table empty, delete it 

    If MyRange.Paragraphs(1).Range.Text = vbCr Then 

        MyRange.Paragraphs(1).Range.Delete 

    End If 

 

     'Set a range to the para preceding the current table 

    Set MyRange = oTable.Range 

    MyRange.Collapse wdCollapseStart 

    MyRange.Move wdParagraph, -1 

     'if para before table empty, delete it 

    If MyRange.Paragraphs(1).Range.Text = vbCr Then 

        MyRange.Paragraphs(1).Range.Delete 

    End If 

 

Next oTable 

 

You also can't use Find & Replace to delete the first or last paragraph in a table cell, if empty. If the user inserted 

an empty paragraph at the start or end of a table cell (in order to simulate “space before paragraph” or “space after 

paragraph”), you have to use something like the following to remove those empty paragraphs: 

 

Dim oTable As Table, oCell As Cell, MyRange As Range 

For Each oTable In ActiveDocument.Tables 

    'Using oCell.Next to cycle through table cells is much quicker 

    ' in long tables than using For Each oCell 

    Set oCell = oTable.Range.Cells(1) 

    For Counter = 1 To oTable.Range.Cells.Count 

 

        If Len(oCell.Range.Text) > 2 And _ 

                oCell.Range.Characters(1).Text = vbCr Then 

            'if cell is NOT blank, but it starts with a blank paragraph, delete the blank para 

            'Note that a blank cell contains 2 characters; 

            'a paragraph mark and an end of cell marker 

            oCell.Range.Characters(1).Delete 

        End If 

 

        If Len(oCell.Range.Text) > 2 And _ 

                Asc(Right$(oCell.Range.Text, 3)) = 13 Then 

            'if cell is NOT blank, but it ends with a blank paragraph, delete the blank para 

            Set MyRange = oCell.Range 

            MyRange.MoveEnd Unit:=wdCharacter, Count:=-1 

            MyRange.Characters.Last.Delete 

        End If 

 

        Set oCell = oCell.Next 

    Next Counter 

 

Next oTable 

 

So the complete macro would look like this: 

 

Sub DeleteEmptyParas() 

 

Dim MyRange As Range, oTable As Table, oCell As Cell 

 

With Selection.Find 

    .Text = "^13{2,}" 



    .Replacement.Text = "^p" 

    .Forward = True 

    .Wrap = wdFindContinue 

    .Format = False 

    .MatchCase = False 

    .MatchWholeWord = False 

    .MatchAllWordForms = False 

    .MatchSoundsLike = False 

    .MatchWildcards = True 

    .Execute Replace:=wdReplaceAll 

End With 

 

Set MyRange = ActiveDocument.Paragraphs(1).Range 

If MyRange.Text = vbCr Then MyRange.Delete 

 

Set MyRange = ActiveDocument.Paragraphs.Last.Range 

If MyRange.Text = vbCr Then MyRange.Delete 

 

For Each oTable In ActiveDocument.Tables 

    #If VBA6 Then 

        'The following is only compiled and run if Word 2000 or 2002 is in use 

         'It speeds up the table and your code 

         oTable.AllowAutoFit = False 

    #End If 

 

    'Set a range to the para following the current table 

     Set MyRange = oTable.Range 

    MyRange.Collapse wdCollapseEnd 

    'if para after table empty, delete it 

    If MyRange.Paragraphs(1).Range.Text = vbCr Then 

        MyRange.Paragraphs(1).Range.Delete 

    End If 

 

     'Set a range to the para preceding the current table 

    Set MyRange = oTable.Range 

    MyRange.Collapse wdCollapseStart 

    MyRange.Move wdParagraph, -1 

     'if para before table empty, delete it 

    If MyRange.Paragraphs(1).Range.Text = vbCr Then 

        MyRange.Paragraphs(1).Range.Delete 

    End If 

 

Next oTable 

 

End Sub 

 

__________________ 

 

1. 

 

 

You could modify the macro to cater for that; for example, if my formatting macro finds a blank paragraph 

separating two tables, it applies the Heading 1 style to that paragraph and inserts the text: “Heading text needs to go 

here” at that point; and at the end of the macro, a message box is displayed (when appropriate) warning the user 

that they need to type meaningful heading text at those places, and explaining how to find them. However, the code 

to do that is beyond the scope of this article. 

 



 

 

 

Click to view Terms of Use page 

 

Click to view Disclaimer page 

 

 

====================================================== 

 

 

 

 

 

 

##################################################### 

 


