[bookmark: _Toc36046476][bookmark: _Hlk106102754]VBA tips and tricks

Selection.Expand wdParagraph
With Selection.Find
 .ClearFormatting
 .Replacement.ClearFormatting
 .Text = "6"
 .Wrap = wdFindStop
 .Forward = True
 .Replacement.Text = "7"
 .MatchWildcards = True
 .Execute Replace:=wdReplaceAll
 DoEvents
End With

Appendix 1 – Ordinary codes for F&R
	Character
	Find
	Replace

	any character
	^?
	

	any digit
	^#
	

	any letter
	^$
	

	caret
	^^
	

	clipboard contents
	
	^c

	column break
	^n
	^n

	(Mac only?) Comment
	^a
	^a

	‘what you just found’
	
	^&

	endnote mark
	^e
	

	field
	^d
	

	footnote mark
	^f
	

	hyphen, nonbreaking
	^~
	^~

	hyphen, optional
	^-
	^-

	line break
	^l
	^l

	manual page break
	^m
	^m

	paragraph mark
	^p (or ^13)
	^p (not ^13)

	section break
	^b
	

	space, ordinary
	^32
	

	space, nonbreaking
	^s
	^s

	tab character
	^t
	^t

	white space (i.e. space or tab)
	^w
	

[bookmark: _Toc36046477][bookmark: _Hlk106102862]Appendix 2 – Special codes for non-wildcard F&R

	Character
	Find

	(¼)
	^0188

	(½)
	^0189

	(¾)
	^0190

	(¹)
	^0185

	(²)
	^0178

	(³)
	^0179

	bullet (•)
	^0149

	caret character (^)
	^^

	copyright (©)
	^0169

	degree symbol (°)
	^0176

	divide (÷)
	^0247

	ellipsis (…)
	^0133

	em dash
	^+

	en dash
	^=

	endnote
	^e

	euro (€)
	^0128

	footnote
	^f

	hash (#)
	^35

	hyphen, nonbreaking
	^~

	hyphen, optional
	^-

	masculine ordinal (as in Nº) (º)
	^0186

	medial dot (•)
	^0183

	multiply (×)
	^0215

	vertical bar (|)
	^0124

	paragraph mark
	^p

	quote, open single curly (‘)
	^0145

	quote, close single curly (’)
	^0146

	quote, single unsexed (')
	^39	Comment by Paul Beverley: You have to use ^39 in non-wildcard Find, but in wildcard Find, you can just use '.

	quote, open double curly (“)
	^0147

	quote, close double curly (”)
	^0148

	quote, double unsexed (")
	^34	Comment by Paul Beverley: Ditto. In a wildcard Find you can just use ".

	registered trademark (®)
	^0174

	space
	^32

	space, nonbreaking
	^s

	tab character
	^t

	tilde (~)
	^0126

	trademark (™)
	^0153

	
	

	Unicode numbers (e.g.)
	^u8211 (Unicode 8211 = en dash)

[bookmark: _Toc36046478][bookmark: _Hlk106102908]Appendix 3 – Special codes for wildcard F&R
Jack Lyon of the Editorium supplies a free wildcard summary that you can download from: www.editorium.com/wildcard_reference.pdf

Jack recommends printing it on 8.5×11″ cardstock, both front and back (each side will be different), and then cutting the card-stock in half lengthwise (at 4.25″). That will give you a handy reference card to keep by your computer and another card to give to a friend. You might also be interested in Jack’s Wildcard Cookbook, which will teach you how to use wildcards from beginning to end: editorium.com/archive/wildcard-cookbook-for-microsoft-word/

^1	Picture – use [^g] on Mac
^2	Auto-referenced endnote (not ^e)
^2	Auto-referenced footnote (not ^f)
^5	Comment mark
^9	Tab (although ^t seems to work OK)
^11	New line
^12	Page or section break
^13	Carriage return (not ^p)
^14	Column break
^19	Opening field brace (when the field braces are visible)
^21	Closing field brace (when the field braces are visible)

?	Finds any single character: ‘c?t’ finds ‘cat’, ‘cut’, and ‘cot’.
*	Finds any string of (zero or more) characters: ‘b*d’ finds ‘bad’, ‘bread’, and ‘bewildered’ – and it finds ‘bd’.
[]	Finds one of the specified characters: ‘b[ai]t’ finds ‘bat’ and ‘bit’ but not ‘bet’.
[-]	Finds any single character in the specified range (which must be in ascending order): ‘[l-r]ight’ finds ‘light’, ‘might ’, ‘night’, and ‘right’ (and ‘oight’, ‘pight’, and ‘qight’, if they exist).
[!]	Finds any single character except those specified: ‘m[!u]st’ finds ‘mist’ and ‘most’ but not ‘must’. ‘t[!ou]ck’ finds ‘tack’ and ‘tick’ but not ‘tock’ or ‘tuck’.
[!x-z]	Finds any single character except those in the specified range: ‘t[!a-m]ck’ finds ‘tock’ and ‘tuck’ but not ‘tack’ or ‘tick’.
{n}	Finds exactly n occurrences of the previous character or expression: ‘re{2}d’ finds ‘reed’ but not ‘red’.
{n,}	Finds at least n occurrences of the previous character or expression: ‘re{1,}d’ finds ‘red’ and ‘reed’ (and ‘reeeed’!).
{n,m}	Finds from n to m occurrences of the previous character or expression: ‘10{1,3}’ finds ‘10’, ‘100’, and ‘1000’, but not ‘10000’.
@	Finds one or more occurrences of the previous character or expression, if there are any: ‘me@t’ finds ‘met’ and ‘meet’.
<	Finds the beginning of a word: ‘<inter’ finds ‘interest’ and ‘interrupt’ but not ‘splinter’.
>	Finds the end of a word: ‘in>‘ finds ‘in’ and ‘main’ but not ‘inspiring’.

[bookmark: _Toc36046479]Appendix 4 – Some useful wildcard expressions
First let me try to explain my terminology:

1) Here is an example of what I call an ‘expression’:

[0-9]{4}

If you type this into the Find box and click ‘Use wildcard’ and then ‘Find Next’, it will jump to the next year, e.g. ‘2009’, well, to the next four-digit number.

2) Ordinary finds and expressions can be grouped, by using (), then those groups can be referred to by using \1 for the first group, \2 for the second, etc.

3) Using [] specifies a range, i.e. “Find one of these characters.”. For example...

[02468]		finds an even number

[0-9]		finds one digit

[a-z]		finds a single lowercase character

[A-Z]		finds a single uppercase character

Using @ after a character or a range means “Find one or more of these – but find as few as possible.”

Using, say, {2} after a character or a range means “Find two of these.”

Using, say, {2,4} after a character or a range means “Find two, three or four of these.”

Using, say, {2,} after a character or a range means “Find two, or more of these – but find as MANY as possible.”

Examples:
o{1,}		Finds: profit, proofreader, spooof!

o@		Finds: profit, proofreader, spooof!

o@f		Finds: profit, proofreader, spooof!

Useful example expressions:
[a-z]{1,}	lowercase word

[A-Z]{1,}	uppercase word

[a-zA-Z]{1,}	mixed-case word, e.g. Beverley, McTaggert, BBC, hello

N.B. Some websites and books advocate use of [A-z]. This is wrong, (a) it does not find accented characters, such as in ‘façade’ or ‘déjà vu’, and (b) it includes the characters with ASCII codes between ‘Z’ and ‘a’, that is: [, \,], ^, _, and ` (back tick).

[0-9]{3,}	multi-digit number, for 100,000, it would first find just 100, then 000

[,0-9]{5,}	multi-digit number with commas, e.g. 100,000 or 4567 or 1234,6785,000

[hw][tw][tw][a-zA-Z0-9:/.\-_=\?&]{6,}		URL (if you think of more characters needed, please tell me!)

[Α-Ω]		uppercase Greek character

[α-ω]		lowercase Greek character

[А-Я]		uppercase Cyrillic character (may be wrong – I don’t know Cyrillic!)

[а-я]		lowercase Cyrillic character (may be wrong – I don’t know Cyrillic!)

[a-z]@ing	present participles

[a-z]@ed>	past participles

N.B. [a-z]{1,}ing wouldn’t work because for, say, ‘running’, the [a-z]{1,} part would find the whole of ‘running’, and ‘running’ is not followed by ‘ing’. Remember, {1,} means ‘find as many as possible’.

[bookmark: _Toc36046480]Appendix 5 – ASCII codes
(N.B. For Mac users, it seems that some codes may be different. The following site lists them: .)

33	!	78	N	123	{	168	¨	213	Õ
34	"	79	O	124	|	169	©	214	Ö
35	#	80	P	125	}	170	ª	215	×
36	$	81	Q	126	~	171	«	216	Ø
37	%	82	R	127	��	172	¬	217	Ù
38	&	83	S	128	€	173		218	Ú
39	'	84	T	129	�	174	®	219	Û
40	(85	U	130	‚	175	¯	220	Ü
41)	86	V	131	ƒ	176	°	221	Ý
42	*	87	W	132	„	177	±	222	Þ
43	+	88	X	133	…	178	²	223	ß
44	,	89	Y	134	†	179	³	224	à
45	-	90	Z	135	‡	180	´	225	á
46	.	91	[136	ˆ	181	µ	226	â
47	/	92	\	137	‰	182	¶	227	ã
48	0	93]	138	Š	183	•	228	ä
49	1	94	^	139	‹	184	¸	229	å
50	2	95	_	140	Œ	185	¹	230	æ
51	3	96	`	141	�	186	º	231	ç
52	4	97	a	142	Ž	187	»	232	è
53	5	98	b	143	�	188	¼	233	é
54	6	99	c	144	�	189	½	234	ê
55	7	100	d	145	‘	190	¾	235	ë
56	8	101	e	146	’	191	¿	236	ì
57	9	102	f	147	“	192	À	237	í
58	:	103	g	148	”	193	Á	238	î
59	;	104	h	149	•	194	Â	239	ï
60	<	105	i	150	–	195	Ã	240	ð
61	=	106	j	151	—	196	Ä	241	ñ
62	>	107	k	152	˜	197	Å	242	ò
63	?	108	l	153	™	198	Æ	243	ó
64	@	109	m	154	š	199	Ç	244	ô
65	A	110	n	155	›	200	È	245	õ
66	B	111	o	156	œ	201	É	246	ö
67	C	112	p	157	�	202	Ê	247	÷
68	D	113	q	158	ž	203	Ë	248	ø
69	E	114	r	159	Ÿ	204	Ì	249	ù
70	F	115	s	160		205	Í	250	ú
71	G	116	t	161	¡	206	Î	251	û
72	H	117	u	162	¢	207	Ï	252	ü
73	I	118	v	163	£	208	Ð	253	ý
74	J	119	w	164	¤	209	Ñ	254	þ
75	K	120	x	165	¥	210	Ò	255	ÿ
76	L	121	y	166	¦	211	Ó	
77	M	122	z	167	§	212	Ô	

[bookmark: _Toc36046481]Appendix 6 – Useful unicode numbers
0160	hard space
0215	×
0247	÷
8201	thin space
8211	– (en)
8212	— (em)
8216	‘
8217	’
8220	“
8221	”
8722	− (minus)

U+2153	⅓	1/3
U+2154	⅔	2/3
U+2155	⅕	1/5
U+2156	⅖	2/5
U+2157	⅗	3/5
U+2158	⅘	4/5
U+2159	⅙	1/6
U+215A	⅚	5/6
U+215B	⅛	1/8
U+215C	⅜	3/8
U+215D	⅝	5/8
U+215E	⅞	7/8

[bookmark: _Toc36046482]Appendix 7 – Sample stylesheet
This is just a sample of the sort of stylesheet that you might want to use for your work. It contains various options for the different style decisions, and for each new job, I load up this file, save it into the folder for the given job, edit the title of the book and then, as I look at the brief for the job and assess the list, using various analysis macros, and through general observation, I firm up decisions about various aspects of style and spelling. This sheet can then be passed on to the proofreader and it should enable them to start straight into reading the script without having to make the same set of style decisions that I, as the editor, have already made.

Stylesheet
Book: Authorname: Bookname

Numbers: one to nine, 10 upwards, no comma for four-figure numbers, comma for 10,000 upwards.

Punctuation: Do not use serial comma; Use serial comma.
Use spaced en dashes for parenthetical comments.
Use double single quotation marks.
Full points for etc., et al., i.e., e.g., viz. and cf., but NONE are in italic.
Initial capital after colon: yes/no. ‘Important section: Starting a job’.
Initial capital after hyphen: yes/no. ‘Using Non-Linear Graphics’.
Names with full points with multiple initials spaced/unspaced: J. L. B. Matekoni J.L.B. Matekoni J L B Matekoni Names with full points with multiple initials spaced/unspaced: J. L. B. Matekoni J.L.B. Matekoni J L B Matekoni JLB Matekoni.
Page numbers: p 37/pp 37–40 or p. 37/pp. 37–40 or p37/pp37–40 or p.37/pp.37–40.

Spelling: US, UK, -ize and -yze endings. -ise and -yse endings.
Oxford dictionaries as a general guide.
‘Data’ is used in the singular sense – ‘this data shows…’
‘Data’ is used in the plural sense – ‘these data show…’
‘Data’, if it is referring to ‘stuff stored by the computer’ is used in the singular sense – ‘this data is used…’, but if it is clearly talking about individual items, then the plural is used: ‘these data show…’
Use ‘-ed’ ‘-t’ form for past participle, e.g. ‘burned’, not ‘burnt’.

Reference citations: ‘Jones 1987; Brown 2003; Green et al. 2001’ etc. (i.e. no commas between names and date). ‘Jones (1987); Brown (2003) and Green et al. (2001)’ etc.

Conventions: Citations generally use, for example, “see Fig. 3.7”, but “Figure 3.5 shows…” at the beginning of a sentence.
Use, for example, “discussed in section 4.3 and other sections” and “in chapter 3 and following chapters”.
For equations use “comparing equation/eq. (3.9) with equations/eqs (3.5) and (3.6)”.

Units separated by a non-breaking space from their numbers, e.g. 6 kg (6<nbs>kg).

All figure captions and table captions have the form “Fig. z.xy Text here.” i.e. a full point regardless of whether the text forms a complete sentence.
Labels on figures all lowercase/have one initial cap; labels on axes all lowercase/have one initial cap, “Mirror separation (cm)”.

Greek letters used as variables should be roman/italic.
The d’s of dx/dt etc should be roman/italic.
All subscripts of variables are italic OR Descriptive subscripts of variables are roman, e.g. wave height hW, not hW.

Stress: Use bold for introducing new terms, and italic for emphasis.

Headings: Chapter title: Title case: Capitals for All Significant Words / Sentence case: Capital on initial letter only
Level 1/A: Title case: Capitals for All Significant Words / Sentence case: Capital on initial letter only
Level 2/B: Title case: Capitals for All Significant Words / Sentence case: Capital on initial letter only
Level 3/C: Title case: Capitals for All Significant Words / Sentence case: Capital on initial letter only

Lists: 1., 2., 3. etc. Then use ‘point (2) shows…’
Sublists: i., ii., iii., iv. etc. Then use ‘item (iv) shows’

Word list:
amid/among (not amidst/amongst)
anti<word> – ALL are hyphenated except…

benefitted
cooperat...
coordinat...
eigen<word> – NONE are hyphenated except…

focused
inter<word> – NONE are hyphenated except…

multi<word> – NONE are hyphenated except…

non<word> – ALL are hyphenated except…

over<word> – NONE are hyphenated except…

post<word> – NONE are hyphenated except…

pre<word> – NONE are hyphenated except…

quasi<word> – NONE are hyphenated except…

semi<word> – NONE are hyphenated except…

sub<word> – NONE are hyphenated except…

super<word> – NONE are hyphenated except…

while (not whilst)

[bookmark: _Toc36046483]Appendix 8 – Sample FRedit list

| BookName

| textboxes = yes
| footnotes = yes
| endnotes = yes
| track = yes

DoMacro|FieldsUnlink
DoMacro|LanguageSetUK
DoMacro|AutoListOff
DoMacro|EquationsHighlightAll
DoMacro|IStoIZ
DoMacro|TableSpaceBeforeHeading

| Symbols various
≈| ≈ 
×| × 
+| + 
≤| ≤ 
≥| ≥ 
÷| ÷ 
=| = 
| But if they already had spaces, remove the now multiple spaces
  | 
  | 

| Super/subscripted thin spaces
 | 
 | 

| ‘Funny’ brackets
<&HFF08>|(
<&HFF09>|)

| anything such as 3.4 followed by <tab> or <space> = A head
| and such as 3.4.5 is a B head, etc
~^13 ([0-9]@).|^p\1.
~^13 ([0-9]@).|^p\1.
~^13([0-9]@).([0-9]@)[^t^32]|^p<A>\1.\2^t
~^13([0-9]@).([0-9]@).([0-9]@)[^t^32]|^p\1.\2.\3^t
~^13([0-9]@).([0-9]@).([0-9]@).([0-9]@)[^t^32]|^p<C>\1.\2.\3.\4^t

| multiple spaces after punctuation
~([.,;:\!\?]) {2,}|\1^32

[bookmark: _Toc35275515][bookmark: _Toc36046484]| pairs of spaces to single
| i.e. <not-a-space-or-tab><space><space><not-a-space-or-tab>
~([!^32^t])^32^32([!\(^32^t])|\1^32\2
~([!^32^t])^32^32([!\(^32^t])|\1^32\2

| highlight any multiple spaces
~ {2,}|^&

| delete tabs on line ends
~^t{1,}^13|^p

DoMacro|FigTabBoxTagger

Fig |Figure^32
Fig.|Figure

| Fiddling with the Figure captions
| A. Just make all captions green and yellow highlight
~\Cap>Figure [0-9]{1,3}.[0-9]{1,2}??|^&
~\Cap>Table [0-9]{1,3}.[0-9]{1,2}??|^&
^t|^32
| Anything in green text is a fig caption, so...
| B. Take off trailing full point as in: Figure 1.4. This shows...
~([0-9].[0-9]{1,3}).|\1
~([0-9].[0-9]{1,3}):|\1
| And anything highlighted in yellow is also a fig caption, so...
| C. Remove rogue space after chapter number Figure 1. 4 This shows...
~([0-9]). ([0-9]{1,3})|\1\2
~([0-9]{1,2}.[0-9]{1,3}) |\1^32

| Unspacing multiple initials
| Beverley, P. E. to Beverley, P.E.
~<([A-Z]).^32([A-Z]).^32([A-Z]).|\1.\2.\3.
~<([A-Z]).^32([A-Z]).|\1.\2.

| multiple returns
~^13{3,}|^p^p

| Or to a single return:
| ~^13{2,}|^p

| highlight any tabs at line start
^p^t|^&

| Straight to curly quotes
^39|'
^34|"

i.e.,|i.e.
e.g.,|e.g.

| Highlight “the the”, “that that”, “can, can” etc.
~(<[a-zA-Z]{1,})[.,\!\?:;]{1,}\1[.,\!\?:;]{1,}|^&

| List numbering ‘(1)’ or ‘1)’ to ‘1.’
~^13\(([0-9]{1,2})\)[^t]|^p\1.^t
~^13([0-9]{1,2})\)[^t]|^p\1.^t

| Superscripted hyphens are probably minus signs
-|zczc
zczc|−

°|^0176

|superscript ‘o’
vbvb|^0176

|superscript ‘O’
vbvb|^0176

|superscript ‘0’ (zero)
vbvb|^0176

|Masculine ordinal
º|^0176

<&HF0B0>|°

| Blank off BS, EN and ISOs first
~([BSENO]{2})([0-9])|\1^s\2
~([BSENO]{2}) ([0-9])|\1^s\2

| number ranges
~([^32,\(])([0-9.]@)[- ^=]{1,3}([0-9.]@)|\1\2^=\3
~pp.([0-9]@)[- ^=]{1,3}([0-9]{1,})|pp. \1^=\2

| em dash
—| ^=^32

| space-dash-space
 - | ^=^32
 ^= | ^=^32
 ^= | ^=^32

<<|≪
>>|≫

| “Where x = jsdkskd, etc”
^pWhere|^pwhere
^pWith|^pwith
^pWhich|^pwhich

| Using thin spaces to units
 Hz| Hz
~ ns>| ns
~ p([A-Z])>| p\1
~ n([A-Z])>| n\1
~ k([A-Zm])>| k\1
~ m([A-Zm])>| m\1

| <number>m2(or 3) –> <number><thin space>m2 (vbvbr 3)
~([0-9])m([23])|\1 m::\2
~([0-9]) m([23])|\1 m::\2
| NB Now change ::<character> into superscripted character
~::(?)|\1

 cm| cm
~([0-9]) dB|\1 dB
~([0-9]) V>|\1 V
~([0-9]) W>|\1 W
~([0-9]) m>|\1 m
 eV| eV
 MeV| MeV
 keV| keV
~([0-9]) °|\1°

However |However,^32
¬stress-strain|stress–strain
; however|; however,
¬superced|supersed
¬supress|suppress
¬no-one|no one

| UK docs
~percent>|per cent
¬judgment|judgement
¬acknowledgment|acknowledgement
~<ageing|aging
~<useable|usable
¬practicing|practising
¬practiced|practised
¬licencing|licensing
¬licenced|licensed
| US docs
~per cent>|percent
¬judgement|judgment
¬acknowledgement|acknowledgment
~<ageing|aging
~<useable|usable

ensur|^&
| This next line is not actually black, but dark blue
| i.e. only ‘ensure’ without a following ‘that’ is coloured
ensure that|^&

~<section>|^&
~<chapter>|^&
~<figure>|^&
~et al>|^&

| Serial comma
~[!,] and>|^&
~[!,] or>|^&

| Not serial comma
, and>|^&
, or>|^&

| Try to undo “<Cap>Figure 1.23 shows...”)
~\<Cap\>(Figure [0-9.a-f\(\)]{1,} [a-z])|\1
| Remove ‘A’ and ‘The’ as caption start text
~(\>Figure [0-9.]@)The ([a-z])|\1\2
~(\>Figure [0-9.]@)A ([a-z])>|\1\2
~(\>Table [0-9.]@)The ([a-z])>|\1\2
~(\>[0-9.]@)The ([a-zA-Z])|\1\2

~vol. ([0-9])|Vol. \1
~vol.([0-9])|Vol. \1
~Vol. ([0-9])|Vol. \1
~Vol ([0-9])|Vol. \1
~Vol.([0-9])|Vol. \1
~vol ([0-9])|Vol. \1

~no. ([0-9])|No. \1
~no.([0-9])|No. \1
~No. ([0-9])|No. \1
~No ([0-9])|No. \1
~No.([0-9])|No. \1
~no ([0-9])|No. \1

¬amidst|amid
¬amongst|among
¬whilst|while

| CO2 or SO2
~([SC])[oO0]2|\1O;;2
| NOX
~N[Oo][Xx]>|NO;;X
| water
H2O|H;;2O

| NB Now change ;;<character> into subscripted character
~;;(?)|\1

| th/st/rd/nd not superscript
| First with a superscript space, then without
th |th^32
st |st^32
nd |nd^32
rd |rd^32
th|th
st|st
nd|nd
rd|rd

| Funny square/cube symbols
²|2
³|3

| No need for spacing with punctuation
 ,|,
 ?|?
 !|!
)|)
(|(
| Highlight ‘Ed(s)’ in refs lists, so I remember to deal with them
~\([eEds.]{2,}\)|^&

DoMacro|VancouverCitationChecker
DoMacro|FigTableBoxLister
DoMacro|FullPointOnCaptions
DoMacro|ParagraphEndChecker
| Highlight all double spaces
 |^&

[bookmark: _Hlk41127969][bookmark: _Hlk63430357][bookmark: _Hlk37919087]Appendix 9 – Word 365 options
Introduction
When I want to change one of the options, I can never find it in all the various menus and submenus! So I have typed out all the options, so that they are searchable. Then if I want to change, say, automatic smart quotes, I just search for ‘smart’ and find that it’s not in the main options, but in one of the sections within Proofing–AutoCorrect options.

(N.B. I’ve highlighted the 2010 options – in the following appendix – in grey so that if you’re searching for a particular option and you get to a grey highlighted area, you’ll know that this is relevant only to Word 2010, and not 365.)

General
General options for working with Word

User Interface options
When using multiple displays:
	optimize for best appearance
	optimize for compatibility (application restart required)
Show Mini Toolbar on selection
Enable Live Preview
Update document content while dragging
Collapse the ribbon automatically
Collapse the Microsoft search box by default
ScreenTip style: [menu]

Personalize your copy of Microsoft Office
User name: [input]
Initials: [input]
Always use these values regardless of sign into Office
Office Background [menu]
Office Theme [menu]

[bookmark: _Hlk37074644]Privacy settings
Privacy settings [menu]

LinkedIn features
Use LinkedIn features in Office to stay connected with your professional network and keep up to date in your industry
Enable LinkedIn features in my Office applications
About LinkedIn features	Managed LinkedIn account associations

Start up options
Choose the extensions you want Word to open by default: [Default Programs…]
Tell me if Microsoft Word isn’t the default program for viewing and editing documents.
Open e-mail attachments and other uneditable files in reading view
Show the Start screen when this application starts

Co-authoring options
Allow co-authoring on files with macros

Real-time collaboration options
Show names on presence flags

[image:]

Display
Change how document content is displayed on the screen and when printed.

Page display options
Show white space between pages in Print Layout view
Show highlighter marks
Show document tooltips on hover

Always show these formatting marks on the screen
Tab characters
Spaces
Paragraph marks
Hidden text
Optional hyphens
Object anchors
Show all formatting marks

Printing options
Print drawings created in Word
Print background colors and images
Print document properties
Print hidden text
Update fields before printing
Update linked data before printing

[image:]

Proofing
Change how Word corrects and formats your text.

AutoCorrect options
Change how Word corrects and formats the text as you type [AutoCorrect options]

AutoCorrect options

1) AutoFormat
Apply (blue not selected, red selected)
Built-in Heading styles		Automatic bulleted lists
List styles			Other paragraph styles

Replace (blue not selected, red selected)
"Straight quotes" with “smart quotes”
Ordinals (1st) with superscript
Fractions (1/2) with fraction character (½)
Hyphens (--) with dash (–)
Bold and _italic_ with real formatting
Internet and network paths with hyperlinks

Preserve (blue not selected, red selected)
Styles

Always AutoFormat (blue not selected, red selected)
Plain text email documents

[image:]

2) Actions
Word can provide additional actions, for certain words or phrases in your document, through the right-click menu.

Enable additional actions in the right-click menu

Available actions: (blue not selected, red selected)
Address (English)
Date (XML)
Financial Symbol (XML)
Instant Messaging Contacts (English)
Measurement Converter (Measurement Converter)
Person Name (English)
Place (English)
Telephone Number (XML)
Time (XML)

[image:]

3) AutoCorrect (none of these selected)
Show AutoCorrect Options buttons
Correct TWo INitial CApitals
Capitalize first letter of sentences
Capitalize first letter of table cells
Capitalize names of days
Correct accidental usage of cAPS LOCK key

Replace text as you type
[list]
Automatically use suggestions from the spelling checker
[image:]

4) Math AutoCorrect (none of these selected)

Use Math AutoCorrect rules outside of math regions
When Math AutoCorrect and AutoCorrect rules conflict, AutoCorrect rules will be used.
Replace text as you type [menu]

Recognized Functions [menu]
acos, acosh, acot, ... sup. tan, tanh.

[image:]

5) AutoFormat as you type

[bookmark: _Hlk41138130]Replace as you type (blue not selected, red selected)
"Straight quotes" with “smart quotes”		Ordinals (1st) with superscript
Fractions (1/2) with fraction character (½)	Hyphens (--) with dash (–)
Bold and _italic_ with real formatting
Internet and network paths with hyperlinks

[bookmark: _Hlk41138146]Apply as you type (none of these selected)
Automatic bulleted lists		Automatic numbered lists
Border lines			Tables
Built-in Heading styles

Automatically as you type (none of these selected)
Format beginning of list item like the one before it
Set left- and first-indent with tabs and backspaces
Define styles based on your formatting

[image:]

When correcting spelling in Microsoft Office programs
Ignore words in UPPERCASE
Ignore words that contain numbers
Ignore internet and file addresses
Flag repeated words
Enforce accented uppercase in French
Suggest from main dictionary only
Custom dictionaries [menu]
French modes [menu]
Spanish modes [menu]

When correcting spelling and grammar in Word
Check spelling as you type
Mark grammar errors as you type
Frequently confused words
Check grammar and refinements in the Editor pane
Show readability statistics
Choose the checks editor will perform for grammar and refinements setting
Writing style [menu]

Grammar
Academic degrees
Adjective used instead of adverb
Adverb instead of adjective
Agreement within noun phrases
‘An’ ‘and’ confusion
Capitalization
Capitalization of March and May
Capitalization of personal titles
Comma after greeting
Comma before quotations
Comma missing after introductory phrase
Comma splice
Comma with conjunctive adverbs
Comma with conjunction
Comma around descriptive clause
Commonly confused phrases
Commonly confused words
Comparative use
Correlative conjunction mismatch
Date formatting
Embarrassing words
Hyphenation
Incorrect auxiliary
Incorrect negation
Incorrect number ending
Incorrect pronoun case
Incorrect reflective pronoun use
Incorrect use of that
Incorrect verb form
Incorrect verb form after auxiliary
Indefinite article
Indirect questions
Misheard phrases
Missing comma
Modal confusion
Multiple modals
[bookmark: _Hlk38623326]Noun number
Possessive and plural forms
Punctuation
Question mark missing
Redundant colon
Redundant comma before complement clause
Redundant question mark
Repeated auxiliary
Semicolon use
Spacing
Subject verb agreement
Too many determiners
Unnecessary hyphen
Use of plain verb form
Use of the word ‘lack’
Use of will and would
Verb use
Which who confusion
Who whom confusion
Word split

Clarity
Adverb placement
Double negation
Jargon
Passive voice
Passive voice with unknown actor
Sentence structure
Simpler wording
Split infinitives
Use of euphemisms

Conciseness
Conjunction overuse
Normalizations
Wordiness
Words expressing uncertainty

Formality
Colloquial verb phrase
Contractions
Informal language
Opinion markers
Slang
Subjunctive mood

Inclusiveness
Age bias
Cultural bias
Ethnic slurs
Gender bias
Gender specific language
Racial bias
Sexual orientation bias

Punctuation conventions
Comma with adverbials
Oxford comma
Unnecessary comma
Punctuation required with quotes [menu]
Space between sentences square [menu]

Resume
Avoid first person references
Superfluous expressions
Unsuitable expressions
Vague quantifiers
Vague verbs

Vocabulary
[bookmark: _Hlk38631793]Clichés
Collective nouns
Locale-specific words
Region-specific words
Vague adjectives
Vague or unnecessary adverbs
Weak verbs

Check document

Exceptions for [menu]
Hide spelling errors in this document only
Hide grammar errors in this document only

[image:]

Save
Customize how documents are saved.

Save documents
AutoSave OneDrive and SharePoint Online files by default on Word
Save files in this format: [menu]
Save AutoRecover information every [menu] minutes
Keep the last AutoRecovered version if I close without saving
AutoRecover file location: [menu]
Don’t show the Backstage when opening or saving files with keyboard shortcuts
Show additional places for saving, even if sign-in may be required.
Save to Computer by default
Default local file location: [menu]
Default personal templates location: [menu]

Offline editing options for document management server files
Saving checked out files to server drafts is no longer supported. Checked out files are now saved to the Office Document Cache.
Server drafts location: [menu]

Preserve fidelity when sharing this document: [menu]
Embed fonts in the file
Embed only the characters used in the document (best for reducing file size)
Do not embed common system fonts

[image:]

Language
Set the Office Language Preferences

Office display language
Buttons, menus, and other controls will show in the first available language on this list.
1. 	Match Microsoft Windows <preferred>
2. 	English

Install additional display languages from Office.com

Office authoring languages and proofing
Manage languages used for creating and editing documents, including proofing tools such as spelling and grammar check.
English (United Kingdom) <preferred> 	Proofing installed

Install additional keyboards from Windows Settings

[image:]

Ease of access
Make Word more accessible.

Make your document accessible to others
The accessability checker helps you find and fix content in your document that may make it harder for people with disabilities to consume your content. You can get it from Review > Check Access ability. Office can remind you about accessibility issues while you work by showing a reminder in the Status Bar.

Keep accessability checkout running while I work

Feedback options
Provide feedback with sound
Sound Scheme: [menu]
Provide feedback with animation

Application display options
ScreenTip style [menu]
	Show feature descriptions in ScreenTips
	Don't show feature descriptions in ScreenTips
	Don't show ScreenTips
Show shortcut keys in ScreenTips
Show the start screen when this application starts

Automatic Alt Text
Automatic alt text generates descriptions for pictures to make them accessible for people with vision impairments.
Access alt text at any time by clicking “Edit alt text…” in the context menu for pictures.

Automatically generate alt text for me.

Document display options
Expand all headings when opening a document
[image:]

Advanced
Advanced options for working with Word

Editing options
Typing replaces selected text
When selecting, automatically select entire word <− My advice: switch this off!
Allow text to be dragged and dropped
Use CTRL + Click to follow hyperlink
Automatically create drawing canvas when inserting AutoShapes
Use smart paragraph selection <− My advice: switch this off!
Use smart cursoring <− My advice: switch this off!

Use the Insert key to control overtype mode
	Use overtype mode
Prompt to update style
Use Normal style for bulleted or numbered lists
Keep track of formatting
	Mark formatting inconsistencies
Updating style to match selection: [menu]
Enable click and type
	Default paragraph style: [menu]
Show AutoComplete suggestions
Do not automatically hyperlink screenshot

Cut, copy, and paste (none of these selected)
Pasting within the same documents: [menu]
Pasting between documents: [menu]
Pasting between documents when style definitions conflict: [menu]
Pasting from other programs: [menu]
Insert/paste pictures as: [menu]

Keep bullets and numbers when pasting text with Keep Text Only option
Use the Insert key for paste
Show Paste Options button when content is pasted
Use smart cut and paste <− My advice: switch this off!
[bookmark: _Hlk38632871]Use default options for [menu]
	Individual options
		Adjust sentence and word spacing automatically
		Adjust paragraph spacing on paste
		Adjust table formatting and alignment on paste
		Smart style behaviour
		Merge formatting when pasting from Microsoft PowerPoint
		Adjust formatting when pasting from Microsoft Excel
		Merge pasted lists with surrounding lists

Link handling
Open supported hyperlinks to Office files in Office desktop apps

Pen
Used pen to select and interact with content by default

Image size and quality
Discard editing data
Do not compress images in file
Default resolution: [menu]

Chart
Properties follow chart data point

Show document content
Show background colors and images in Print Layout view
Show text wrapped within the document window
Show picture placeholders
Show drawings and text boxes on screen
Show bookmarks
Show text boundaries
Show crop marks
Show field codes instead of their values
Field shading: [menu]
Use draft font in Draft and Outline views
	Name: [menu]
	Size: [menu]
Font substitution
Expand all headings when opening a document

Display
Show this number of recent documents [menu]
Quickly access the number of recent documents
Show this number of unpinned recent folders
Show measurements in units of [menu]
Style area pane width in Draft and Outline views [menu]
Show pixels for HTML features
Show shortcut keys in ScreenTips
Show horizontal scroll bar
Show vertical scroll bar
Show vertical ruler in Print Layout view
Optimize character positioning for layout rather than readability
Disable hardware graphics acceleration
Update document content while dragging
Use subpixel positioning to smooth fonts on screen
Show pop-up buttons for adding rows and columns in tables

Print
Use draft quality
Print in background
Print pages in reverse order
Print XML tags
Print field codes instead of their values
Allow fields containing track changes to update before printing
Print on front of the sheet for duplex printing
Print on back of the sheet for duplex printing
Scale contents for A4 or 8.5 × 11″ paper sizes
Default tray: [menu]

When printing this document
Print PostScript over text
Print only the data from a form

Save
Prompt before saving Normal template
Always create backup copy
Copy remotely stored files onto your computer, and update the remote file when saving
Allow background saves

Preserve fidelity when sharing this document [menu]
Save form data as delimited text file
Embed linguistic data

General
Confirm file format conversion on open
Update automatic links at open
Allow opening a document in Draft view
Enable background repagination
Show add-in user interface errors
Mailing address: [input box]
File locations: [menu]
Web options: [menu] (Too many to type out, sorry!)

Compatibility options for: [menu]
Lay out this document as if created in: [menu]

[image: C:\Users\Paul\AppData\Local\Microsoft\Windows\INetCache\Content.Word\Sprite.jpg]
[image: C:\Users\Paul\AppData\Local\Microsoft\Windows\INetCache\Content.Word\Sprite.jpg]
[image: C:\Users\Paul\AppData\Local\Microsoft\Windows\INetCache\Content.Word\Sprite.jpg]

Trust Center
Help keep your documents safe and your computer secure and healthy.

Security & more
Visit Office.com to learn more about protecting your privacy and security.
	Microsoft Trust Center

Microsoft Word Trust Center
The Trust Center contains security and privacy settings. These settings help keep your computer secure. We recommend that you do not change these settings.

(In which case, there’s no point in my typing them out for you!)

Trust Centre Settings [menu]
[image:]

Macro Settings
Disable all macros without notification	Comment by Paul Beverley: Leave this as the selected item. This is referring to incoming macros. To run your own macros (or mine!) on your computer you don’t need to change this setting.
Disable all macros with notification
Disable all macros except digitally signed macros
Enable all macros (not recommended; potentially dangerous code can run)

Developer Macro Settings
Trust access to the VBA project object model

[image:]

Removing personal information

N.B. First save a copy of your file, in case you want to revert to it!

Click the File tab, and then click Info.

Click the third box “Check for Issues”, where it also says “Inspect Document”.

Select the Inspect Document option.

In the Document Inspector dialog box, click Inspect.

If there is personal information, an exclamation mark will indicate the fact.

DON’T click to remove Comments, Revisions, and Versions (you want to keep the comments, presumably) but DO click on Document Properties and Personal Information.

All the comments should now just say “Author”.

[bookmark: _Hlk38726890][bookmark: _Hlk44058385][bookmark: _Hlk62285678]Appendix 10 – Word 365 menu items
The idea here, as with the Word 365 Options above, is that if you are struggling to find where a particular function is located, you can use Word’s Find function to locate it in the following list.

“Work in Progress”
(And if you want to help, how about completing it for me? :-)
Home
Clipboard
Paste
Format
Painter
Font

Paragraph

Styles

Editing
Find
Replace
Select
Dictate
Voice

Main
Insert

Pages
[bookmark: _Hlk38726977]Cover page
Blank page
Page break

Editor

Insert
Cover page
Blank page
Page break
Tables
Tables
Illustrations
Pictures
Shapes
Icons
3D models
Smart art
Chart
Screenshot
Adens
Get adens
My adens
Wikipedia
Media
Online video
Links
Link
Bookmark
Cross reference
Comments
Comment
Header
& footer header
Footer
Page number
Text
Text box
Quick parts
Word art
Drop cap
Signature line
Date time
Object
Symbols
Equation
Symbol main
Design
Themes colours fonts
Paragraph spacing
Effects
Set as default
Page
Background watermark
Page colour
Page borders main
Layout

Page
Setup margins
Orientation
Size
Columns
Breaks
Line numbers
Hyphenation
Paragraph
Indent
Spacing
Range
Position
Wrap text
Bring forward
Send backward
Selection pane
Align
Group
Rotate

[bookmark: _Hlk38637842]References

Table of contents
Add text
Update table
Footnotes
Insert footnote
Insert endnote
Next footnote
Show notes
Research
Smart look up
Researcher
Citations & bibliography
Insert citation
Manage sources
Styles
Bibliography
Captions
Insert caption
Insert table of figures
Update table
Cross reference
Index
Mark entry
Insert index
Update index
Table of authorities
Mark citation
Insert table of authorities
Update table
Mailings
Create
Envelopes
Labels
Mail merge
Mail merge
Select recipients
Edit recipient list
Right
Insert fields
Highlight merge fields
Address block
Greeting line
Insert merge field
Rules
Match fields
Update labels
Preview results
Preview results
Find recipient
Check for errors
Finish
Finish
Merge

Review
Proofing
Editor
Thesoras
Word count
Speech
Word aloud
Accessibility
Check accessibility
Language
Translate
Language
Comments
New comment
Delete
Previous
Next
Show comments
Tracking
Track changes all markup show markup
Reviewing pain
Changes
Accept
Reject
Previous
Next
Compare
Compare
Protect
Block authors
Restrict editing
Ink
Hidingg

CV
CV assistant

View
Views
Read mode
Print layout And web layout

Appendix 11 – Word 2010 options
(I’ve highlighted the 2010 options in grey so that if you’re searching for a particular option and you get to a grey highlighted area, you know that this is relevant only to Word 2010, and not 365.)

When I want to change one of the options, I can never find it in all the various menus and submenus! So I have typed out all the options, so that they are searchable. Then if I want to change, say, automatic smart quotes, I just search for ‘smart’ and find that it’s not in the main options, but in one of the sections within Proofing–AutoCorrect options.

I know this list is for Word 2010, but I’m guessing that it’s similar in most other versions of Word. And it’s better than nothing, anyway! :-)

General
General options for working with Word

User Interface options
Show Mini Toolbar on selection
Enable Live Preview
Color scheme: [menu]
ScreenTip style: [menu]

Personalize your copy of Microsoft Office
User name: [menu]
Initials: [menu]

Start up options
Open e-mail attachments in Full Screen Reading view

[image: C:\Users\Paul\AppData\Local\Microsoft\Windows\INetCache\Content.Word\Sprite1.jpg]

Display
Change how document content is displayed on the screen and when printed

Page display options
Show white space between pages in Print Layout view
Show highlighter marks
Show document tooltips on hover

Always show these formatting marks on the screen
Tab characters
Spaces
Paragraph marks
Hidden text
Optional hyphens
Object anchors
Show all formatting marks

Printing options
Print drawings created in Word
Print background colors and images
Print document properties
Print hidden text
Update fields before printing
Update linked data before printing

[image: C:\Users\Paul\AppData\Local\Microsoft\Windows\INetCache\Content.Word\Sprite2.jpg]

Proofing
Change how Word corrects and formats your text

AutoCorrect options
Change how Word corrects and formats the text as you type [AutoCorrect options]

AutoCorrect options

1) AutoFormat
Apply
Built-in Heading styles		Automatic bulleted lists
List styles			Other paragraph styles

Replace
"Straight quotes" with “smart quotes”
Ordinals (1st) with superscript
Fractions (1/2) with fraction character (½)
Hyphens (--) with dash (–)
Bold and _italic_ with real formatting
Internet and network paths with hyperlinks

Preserve
Styles

Always AutoFormat
Plain text email documents

[image:]

2) Actions
Word can provide additional actions, for certain words or phrases in your document, through the right-click menu.

Enable additional actions in the right-click menu

Available actions:
Address (English)
Financial Symbol (XML)
Instant Messaging Contacts (English)
Measurement Converter (Measurement Converter)
Person Name (English)
Place (English)
Time (XML)

More actions	[via internet]

[image:]

3) AutoCorrect
Show AutoCorrect Options buttons
Correct TWo INitial CApitals
Capitalize first letter of sentences
Capitalize first letter of table cells
Capitalize names of days
Correct accidental usage of cAPS LOCK key
Automatically use suggestions from the spelling checker

Replace as you type
[list]
[image:]

4) Math AutoCorrect

Use Math AutoCorrect rules outside of math regions
When Math AutoCorrect and AutoCorrect rules conflict, AutoCorrect rules will be used.
Replace text as you type [menu]

Recognized Functions [menu]
acos, acosh, acot ... sup, tan, tanh.

[image:]

5) AutoFormat as you type

Replace as you type
"Straight quotes" with “smart quotes”		Ordinals (1st) with superscript
Fractions (1/2) with fraction character (½)	Hyphens (--) with dash (–)
Bold and _italic_ with real formatting
Internet and network paths with hyperlinks

Apply as you type
Automatic bulleted lists		Automatic numbered lists
Border lines			Tables
Built-in Heading styles

Automatically as you type
Format beginning of list item like the one before it
Set left- and first-indent with tabs and backspaces
Define styles based on your formatting

[image:]

Proofing (cont’d)

When correcting spelling in Microsoft Office programs
Ignore words in UPPERCASE
Ignore words that contain numbers
Ignore internet and file addresses
Flag repeated words
Enforce accented In French
Suggest from main dictionary only
Custom dictionaries [menu]
French modes [menu]
Spanish modes [menu]

When correcting spelling and grammar in Word
Check spelling as you type
Use contextual spelling
Mark grammar errors as you type
Check grammar with spelling
Show readability statistics
Writing style [menu]

Exceptions for [menu]
Hide spelling errors in this document only
Hide grammar errors in this document only

[image: C:\Users\Paul\AppData\Local\Microsoft\Windows\INetCache\Content.Word\Sprite.jpg]
Advanced
Advanced options for working with Word

Editing options
Typing replaces selected text
When selecting, automatically select entire word
Allow text to be dragged and dropped
Use CTRL + Click to follow hyperlink
Automatically create drawing canvas when inserting AutoShapes
Use smart paragraph selection
Use smart cursoring
Use the Insert key to control overtype mode
	Use overtype mode
Prompt to update style
Use Normal style for bulleted or numbered lists
Keep track of formatting
	Mark formatting inconsistencies
Updating style to match selection: [menu]
Enable click and type
	Default style: [menu]
Show AutoComplete suggestions

Cut, copy, and paste
Pasting within the same documents: [menu]
Pasting between documents: [menu]
Pasting between documents when style definitions conflict: [menu]
Pasting from other programs: [menu]
Insert/paste pictures as: [menu]
Keep bullets and numbers when pasting text with Keep Text Only option
Use the Insert key for paste
Show Paste Options button when content is pasted
Use smart cut and paste

Image Size and Quality (sic – note different capitalization!)
Discard editing data
Do not compress images in file
Set default target output to: [menu]

Show document content
Show background colors and images in Print Layout view
Show text wrapped within the document window
Show picture placeholders
Show drawings and text boxes on screen
Show text animation
Show bookmarks
Show text boundaries
Show crop marks
Show field codes instead of their values
Field shading: [menu]
Use draft font in Draft and Outline views
	Name: [menu]
	Size: [menu]
Font substitution

Display
Show this number of Recent Documents [menu]
Show measurements in units of [menu]
Style area pane width in Draft and Outline views [menu]
Show pixels for HTML features
Show all windows in the Taskbar
Show shortcut keys in ScreenTips
Show horizontal scroll bar
Show vertical scroll bar
Show vertical ruler in Print Layout view
Optimize character positioning for layout rather than readability
Disable hardware graphics acceleration

Print
Use draft quality
Print in background
Print pages in reverse order
Print XML tags
Print field codes instead of their values
Allow fields containing track changes to update before printing
Print on front of the sheet for duplex printing
Print on back of the sheet for duplex printing
Scale contents for A4 or 8.5 × 11" paper sizes
Default tray: [menu]

When printing this document
Print PostScript over text
Print only the data from a form

Save
Prompt before saving Normal template
Always create backup copy
Copy remotely stored files onto your computer, and update the remote file when saving
Allow background saves

Preserve fidelity when sharing this document [menu]
Save form data as delineated text file
Embed linguistic data

General
Provide feedback with sound
Provide feedback with animation
Confirm file format conversion on open
Update automatic links at open
Allow opening a document in Draft view
Enable background pagination
Show add-in user interface errors
Show customer submitted Office.com content
Mailing address: [input box]
File locations: [menu] 	Web options: [menu]
Compatibility options for: [menu]
Lay out this document as if created in: [menu]
	Layout options
[image: C:\Users\Paul\AppData\Local\Microsoft\Windows\INetCache\Content.Word\Sprite.jpg]
[image: C:\Users\Paul\AppData\Local\Microsoft\Windows\INetCache\Content.Word\Sprite.jpg]
[image: C:\Users\Paul\AppData\Local\Microsoft\Windows\INetCache\Content.Word\Sprite.jpg]

Trust Center
Help keep your documents safe and your computer secure and healthy.

Protecting your privacy
Microsoft cares about your privacy. For more information about how Microsoft Word helps to protect your privacy, please see the privacy statements.

	Show the Microsoft Word privacy statement
	Office.com privacy statement
	Customer Experience Improvement Program

Security & more
Learn more about protecting your privacy and security from Office.com
	Microsoft Trustworthy Computing

Microsoft Word Trust Center
The Trust Center contains security and privacy settings. These settings help keep your computer secure. We recommend that you do not change these settings.

Trust Centre Settings [menu]
[image: C:\Users\Paul\AppData\Local\Microsoft\Windows\INetCache\Content.Word\Sprite.jpg]

Macro settings
Disable all macros without notification
Disable all macros with notification
Disable all macros except digitally signed macros
Enable all macros (not recommended; potentially dangerous code can run)

Developer Macro Settings
Trust access to the VBA project object model

[image: C:\Users\Paul\AppData\Local\Microsoft\Windows\INetCache\Content.Word\Sprite.jpg]

[bookmark: myTempMark][bookmark: _Toc36046485][bookmark: _Hlk63766724]Appendix 12 – Backing up the Normal Template

First on a PC

[bookmark: _Toc55981664][bookmark: _Toc55981762]Finding the location (pathname) of the Normal template
Your Normal template is held in a Templates folder, set up on your computer by Microsoft. If you don’t know where that is then click File–Options, then click on “Save”, and you’ll get this window:

[image: Graphical user interface, text, application

Description automatically generated]

In the middle of that window is something like:

Default personal templates location: C:\Users\Paul\AppData\Roaming\Microsoft\Templates

So you can select that address and copy it. Now open a new filer window, click in the address line and paste in this address.

If you then go up one level by clicking on “Microsoft” in the address line (or click the up-arrow to the left of the address) you will get this window:

[image:]

Right-click on the “Templates” folder and click: “Create shortcut”. Then if you drag that shortcut file onto your desktop, you will be able to open the Templates folder at a moment’s notice.

[bookmark: _Toc55981665][bookmark: _Toc55981763]Backing up the Normal Template

So, in the Templates folder:

– click on the file ‘Normal’

– click Ctrl-C to copy it

– click Ctrl-V to paste it

Job done!

If you do this regularly, you will end up with a folder looking a bit like this, where ‘Normal - Copy (18)’ is the latest backup version:

[image: Graphical user interface, application, email, Excel

Description automatically generated]

Hint: Change the setting of the Templates folder so that it’s sorted by date, and the most recent file is at the top. That makes it quicker and easier when you've got 30+ backups in the same folder.

[bookmark: _Toc55981666][bookmark: _Toc55981764]Restoring your macros
If you ever need to restore your macros – say Microsoft does an upgrade and your macros disappear – then move the current ‘Normal’ file into the waste bin, click on your latest backup copy (i.e. ‘Normal - Copy (18)’ in the example above) and Ctrl-C and Ctrl-V. This will create a new file, say, ‘Normal - Copy (18) - Copy’, so click on it and then press F2, and rename the resulting file as ‘Normal’.

Now on a Mac
(Supplied by Karen Cox. Thanks, Karen!)

Finding the location (pathname) of the Normal template
Word 365 for Mac
Open any Word file. Run the below NTaddress macro.

Sub NTaddress()
' Version 26.06.20
' Locates your Normal template folder

Documents.Add
Selection.TypeText Text:=NormalTemplate.FullName
End Sub

This macro will create a new Word file containing the pathname for where the Normal template is located on your computer. It should look something like this:

/Users/[YourName]/Library/Group Containers/UBF8T346G9.Office/User Content.localized/Templates.localized/Normal.dotm

Now jump to the Displaying the location of the Normal template in Finder section below.

Word for Mac 2011
Open any Word file. Run the NTaddress macro (see above for the text). This will create a new Word file containing the pathname for where the Normal template is located on your computer. It should look something like this:

Macintosh HD:Users:[YourName]:Library:Application Support:Microsoft:Office:User Templates:Normal.dotm

Change the colons to slashes and remove ‘Macintosh HD’ and it should look like this:

/Users/[YourName]/Library/Application Support/Microsoft/Office/User Templates/Normal.dotm

Now continue to the Displaying the location of the Normal template in Finder section below.

Displaying the location of the Normal template in Finder
Select and copy the pathname that the macro NTaddress produced (⌘+C) – or your amended version minus slashes and ‘Macintosh HD’ if you are working in Word for Mac 2011. NB Don’t just copy the example above!

Open a Finder window or click one that is already open:
1. Click on your desktop.

2. In the Finder menu at the very top of the screen, click Go > Go to Folder. You can type ⌘+Shift+G instead of Go > Go to Folder.

This box appears:

[image:]

If the box already has text in it, delete the text. Into the box, paste the pathname you copied (⌘+V) and click Go. The result will be slightly different for Word 2011 and Word 365, but will be something like this:

[image:]

To easily access the Normal Template folder, make an alias (a shortcut to the folder):

1. Put the mouse over the Template folder.

2. Right click on the folder and select “Make Alias.”

[image: Graphical user interface, application

Description automatically generated]

3. Drag the Templates alias folder to somewhere on your computer where it will be easy for you to regularly access it, such as a macros backup folder.

[image:]

Backing up the Normal Template

First, quit Word.

Then:
1. Click on the Templates alias folder.

2. Click on the file ‘Normal’.

3. Click ⌘+C to copy it.

4. Click ⌘+V to paste it.

Job done!

If you do this regularly, you will end up with a folder looking a bit like this, where ‘Normal copy 6’ is the latest backup version:
[image:]

You might have notice that in the final image in the section Displaying the location of the Normal template in Finder I have renamed my previous backups -v1, -v2, -v3 etc. You can use your normal file-naming convention if you wish, but if you don’t rename files as you back them up Finder will keep track of the different versions and your window will look something like this, with Normal copy 2, Normal copy 3 etc.

Restoring your macros
If you ever need to restore your macros – say Microsoft does an upgrade and your macros disappear – first make sure you have quit Word. Then:

1. Move the current ‘Normal’ file into the Bin (or Trash).

2. Click on your latest backup copy (i.e., ‘Normal copy 6’ in the example above) and duplicate it using ⌘+C and ⌘+V. This will create a new file (in my case it produced ‘Normal copy 7’).

3. Click on this new file once and rename it as ‘Normal’.

[bookmark: _Hlk66012812]Appendix 13 – Word Macro Techniques
(Version 17.02.21)

Why this appendix?
When I reached the age of 72, and knowing that no-one can live forever, I’ve thought about how best to pass on what I have learned during the previous 14 years of creating macros for editors. The macros themselves will still be here when I’m gone, but I’m aware that the repertoire of techniques I have in my brain will disappear unless I commit them to (electronic) paper.

What follows is a fairly random selection of ideas, sorry. It’s quite difficult to systematise it because many of the techniques are linked, but this is definitely a work in progress. Indeed, as soon as I started to explain some of my ideas, I began to question them and also to wonder if it was possible to do various other things differently, and realised that they might prove useful in future macros, so that has meant that progress is quite slow.

If there are items in comment bubbles, then that’s an indication that it’s a bit that I’m at work on – a sort of ‘Men at work’ signboard. So please feel free to direct comments and/or questions about those bits – indeed, about any of the text below.

I hope that at least some of it proves useful to you.

[bookmark: _Toc61354779]Resources
Bibliography

1) (Definitely) Macro Cookbook, Jack Lyon (2012 – ISBN: 978-1-4341-0332-1)

2) (Probably) An introduction to macro programming Paul Beverley See: Appendix 13 – Word Macro Techniques

3) (Possibly) Word 2007 Macros & VBA Made Easy, Guy Hart-Davis (date? – ISBN: 978-0-07-161479-5)

4) (Reference) Writing Word Macros, Steven Roman (1999 – ISBN: 1-56592-725-7)

Four videos that might help:
Programming Word macros 1 (23:23)
An intro to the idea of programming Word macros
https://youtu.be/bivzgSTfbbk

Programming Word macros 2 (15:49)
Stepping through macros, watching what they do
https://youtu.be/igckZJ0euHk

Programming Word macros 3 (28:11)
Genesis of a macro – Part I
https://youtu.be/iGgBka7H-1w

Programming Word macros 4 (22:11)
Genesis of a macro – Part II
https://youtu.be/NWnmoRRUAKQ

...plus those videos mentioned in the sections below.

[bookmark: _Toc61354780]Changing things within specific paragraphs, sentences and words
(Videos: https://youtu.be/uwLmKZr07ws)

In my video, I go through examples of making changes to the content of paragraphs, sentences and words. The idea is if you want to “something” to certain elements of every paragraph (or sentence or word) in the whole document (or a selection thereof.)

These are the macros I used in the video:

[bookmark: myTempMark2][bookmark: _Hlk108771107]Sub DIYFormatHeadwords()

Sub DIYColourLongSentences()

Sub DIYColourLongWords()

However, You might want to add this at the start of your macros:

' Check if user wants to work on whole file of selection
If Selection.End = Selection.Start Then
 myResponse = MsgBox("Do this to the WHOLE file?", _
 vbQuestion + vbYesNo)
 If myResponse = vbNo Then Exit Sub
 Set rng = ActiveDocument.Content
Else
 Set rng = Selection.Range.Duplicate
End If

In other words, of an area of text is selected, the macro will go ahead and make the changes, just to that area. However, if no text is selected, this code will alert you and ask if you really want to make the changes throughout the whole document.
[bookmark: _Toc61354781]‘Find and do’	Comment by Paul Beverley: Need to write this section
This is a very powerful concept: Look through a document

Sub DIYFindAshortMacro()

Counting the occurences of specific text
The ‘Find and do’ technique could be used as a way of counting the number of occurrences of something, but it would be very slow. Instead, you can use a technique based on find and replace. which you use to find the item you want to count and replace it by the same thing but with one extra character added. Here’s a sample of the code:

myText = "hello"

' Find current length of file
myTot = ActiveDocument.Range.End

' Do token F&R
Set rng = ActiveDocument.Content
With rng.Find
 .ClearFormatting
 .Replacement.ClearFormatting
 .Text = myText
 .Replacement.Text = "^&!"
 .MatchCase = True
 .MatchWildcards = False
 .Execute Replace:=wdReplaceAll
End With
DoEvents
myCount = ActiveDocument.Range.End - myTot
If myCount > 0 Then WordBasic.EditUndo
MsgBox myCount

You record the current length of the file, do the F&R (the "^&!" means “that which you found, plus one extra character”), then find the increase in length of the file.

Finally, you undo the F&R, but only if the file is longer. If it found nothing, then it changed nothing, so the WordBasic.EditUndo would throw up a ‘Nothing to undo’ error.

For years, that was the fastest counting algorithm I could find. There is now a faster algorithm, but it only works for straightforward text counting. It can be used for both case-sensitive and non-case-insensitive counts, and it can be a whole-word count, but it can’t be used for wildcard counting, such as that used in DocAlyse.

[bookmark: _Hlk61875560]So, the faster technique is to text manipulation. You grab the whole of the text as a single string (yes, even if it’s a 400,000-word book!), use Len() to find its length, use Replace() to make the same sort of change as you do with the F&R version, then find the new length of the string.

Here’s a simplistic version of the code:

myText = "hello"

allText = ActiveDocument.Range.Text
totChars = Len(allText)
myCount = Len(Replace(allText, myText, myText & "!")) - totChars

But beware! This will count text-in-text. In other words, if you want to count the number of times ‘etc’ occurs, don’t try it on a text like this:

[bookmark: _Hlk61874224]“Visit an art shop to fetch some etchings and sketches, etc: a bottle of ketchup, a clump of vetch, a technical drawing of a valve and petcock next to a wetcell, a kingbird or petchary, an arrow from a fletchery, a Vietcong drinking a dietcoke or Sir Charles Sketchley receiving his baronetcy, etc. It’ll make you feel tetchy and wretched, and you might even retch!”

The answer would not be 2, as you might expect, but 17!

So you need to ‘prepare’ your all-the-text string so that every single word has a space either side of it, and then in the final two lines, you can do the count – very quickly!

myText = "hello"

allText = " " & ActiveDocument.Content.Text & " "

' Prepare to change all punctuation to " "
' plus all "^p" to "^p " and all "^t" to "^t "

chs = " , . ! : ; [] { } () / \ + "
' The variable ‘chs’ will hold all the Replace()
' items you want to make to the all-the-text string
chs = chs & ChrW(8220) & " "
chs = chs & ChrW(8221) & " "
chs = chs & ChrW(8201) & " "
chs = chs & ChrW(8222) & " "
chs = chs & ChrW(8217) & " "
chs = chs & ChrW(8216) & " "
chs = chs & ChrW(8212) & " "
chs = chs & ChrW(8722) & " "
chs = chs & vbCr & " "
chs = chs & vbTab & " "

' To force space at start; no space at end
' i.e. one space for each character that
' needs changing to a space
chs = " " & chs & " "
chs = Replace(chs, " ", " ")
chs = Replace(chs, " ", " ")

' Make all the replaces on the all-the-text string
chars = Split(chs, " ")
For i = 1 To UBound(chars)
 allText = Replace(allText, chars(i), " ")
Next i

' At last, we're ready to do the counting
totChars = Len(allText)

schText = " " & myText & " "
myCount = Len(Replace(allText, schText, schText & "!")) - totChars

Of course, the preparation work in the first stage of this code takes time, but the final two lines of code do the actual counting, so you can use these final two lines to count any and every word/phrase that you want to – on a ‘whole-word’ basis.

Manipulating the screen
If the selection point is not currently on screen, the following command brings the selection point to about 1/4 or 1/3 the way down the visible window.

ActiveWindow.ScrollIntoView Selection.range

Actually, I sometimes find it more helpful to bring the selection point right to the very top of the screen, so that I can easily find it (especially if the text size is small on screen), so I use my macro, JumpScroll:

Sub JumpScroll()
' Version 08.10.18
' Scrolls current line to the top of the page

Set rng = Selection.range.Duplicate
ActiveDocument.ActiveWindow.LargeScroll down:=1
rng.Select
ActiveDocument.ActiveWindow.SmallScroll down:=1
End Sub

The LargeScroll moves the selection point off screen, you reassert the selection point and a SmallScroll brings it to the top of the screen.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                           

If you’re changing the selection point a lot, while the user doesn’t need to see what’s happening, you can save execution time by not allowing the screen to be updated.

Application.ScreenUpdating = False/True

But beware that if the macro crashes, for some reason, while screen updating is off, you’re in trouble! So you might want to add some error handling (q.v.), to switch screen-updating back on in the event of an error.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                           

You can change the size of the screen, but it fails if the window is either maximised or minimise, so normalise it first.

ActiveDocument.ActiveWindow.WindowState = wdWindowStateNormal
Application.Resize Width:=myWidth, Height:=myHeight

(Beware that some Macs don’t support Application.Resize.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                           

But you can also find out what screen size is available and then change the size of your window...

1) To open a new file in the middle of the screen, at a specific distance from the edge of the screen (doesn’t work on some Macs):

Sub OpenInMiddleScreen()

' User opens the chosen file
Dialogs(wdDialogFileOpen).Show

' Check how much screen area is available
scnHeight = Application.UsableHeight
scnWidth = Application.UsableWidth

' Do some calculations to decide on the window size,
' to leave a margin all the way around

mySideMargin = 100
myTopMargin = 50

Application.Move Left:=mySideMargin, Top:=myTopMargin

wdth = scnWidth - 2 * mySideMargin
ht = scnHeight - 2 * myTopMargin

' Resize the window
Application.Resize Width:=wdth, Height:=ht
End Sub


2) (Again, not on some Macs...) Open each new file with same size window as the current file, but further down and to the right. For this, you need to read the parameters of the current window and then open the new file.

Sub OpenDownAndRight()

myJump = 50

' Read the existing window parameters
nowWdth = Application.Width
nowHt = Application.Height
nowLeft = Application.Left
nowTop = Application.Top

' User opens the new file
Dialogs(wdDialogFileOpen).Show

newLeft = nowLeft + myJump
newTop = nowTop + myJump

' Set window's top left position
Application.Move Left:=newLeft, Top:=newTop

' How much space is available
scnHeight = Application.UsableHeight
scnWidth = Application.UsableWidth

' Do calculations to see if the window will go off screen...
wdth = nowWdth
rtMargin = scnWidth - newLeft - wdth

' and if so choose a better parameter for width
If rtMargin < 0 Then wdth = wdth + rtMargin

ht = nowHt
btmMargin = scnHeight - newTop - ht

' ... if so choose a better parameter for height
If btmMargin < 0 Then ht = ht + btmMargin

Application.Resize Width:=wdth, Height:=ht
End Sub

Counting the occurences of specific text

Dealing with track changes
When you want to do something without track changes, first see what the current state of TC is, then make the changes, then restore TC to as it was. Also, by using doTrack = True/False, you can set whether or not to do the changes with TC off:

doTrack = False ' Or True
revsView = ActiveWindow.View.RevisionsView
myTrack = ActiveDocument.TrackRevisions
If doTrack = False Then ActiveDocument.TrackRevisions = False

' Make the changes

Blah blah blah

' Restore TC
ActiveDocument.TrackRevisions = myTrack
ActiveWindow.View.RevisionsView = revsView

Select the whole of something
Selection.Expand wdParagraph
Selection.Expand wdTable
Selection.Expand wdSentence
Selection.Expand wdWord

But MS Word’s idea of what constitutes a ‘word’ includes the apostrophe and the following space. In this sentence, I’ve highlighted some of the items that consitute a ‘word’:

But MS Word’s idea of what constitutes a ‘word’  includes the apostrophe  and the following space. In this sentence, I’ve highlighted some of the ‘word’s.

The idea is that a ‘word’ is everything up to, but not including, the start of the next word (I deliberately put two spaces before ‘includes’), and it includes the punctuation.

And the following sentence has eight ‘word’s, not five:

Remember “double quotes” are included.


But if you just need the text of the word itself, then to avoid the following space(s) and/or the closing single quote, you could, in theory, use:

Selection.MoveEndWhile cset:=ChrW(8217) & " '", Count:=wdBackward

But don’t!!!

I used this for years until I found that it was the culprit behind the enexplained crashes I was getting when I was using a macro in the region of a comment. Instead, use:

Do While InStr(ChrW(8217) & "' ", Right(Selection.Text, 1)) > 0
  Selection.MoveEnd , -1
  DoEvents
Loop

The DoEvents is added because if this bug in VBA does rear its ugly head, at least you’ll be able to exit the macro cleanly, without actually crashing Word.

(If you’re interested, the Cset command above means: move the selection backwards, past any collection of characters that include, space, straight apostrophe and curly close quote, i.e. curly apostrophe = Chrw(8217).

If you’re using a range, rather than a selection:

rng.Expand wdWord

Then use:

Do While InStr(ChrW(8217) & "' ", Right(rng.Text, 1)) > 0
  rng.MoveEnd , -1
  DoEvents
Loop

Other things you can select
We showed above that you can select a paragraph, table, word or sentence with 

Selection.Expand

And you can do the same for a range:

rng.Expand wdParagraph
rng.Expand wdTable
rng.Expand wdSentence
rng.Expand wdWord

There are other things you can select, but only by using selection. So these commands allow you to define a range – for the currently active selection – giving the section, page, line, paragraph, table or table cell that the start of the selection is in. It does so without changing the selection, which can be quite useful.

You use:

set rng = ActiveDocument.Bookmarks("\Section").Range
set rng = ActiveDocument.Bookmarks("\Page").Range
set rng = ActiveDocument.Bookmarks("\Line").Range
set rng = ActiveDocument.Bookmarks("\Para").Range
set rng = ActiveDocument.Bookmarks("\Table").Range
set rng = ActiveDocument.Bookmarks("\Cell").Range

But if all you want to do is, say, select the whole of the current page, then it’s

ActiveDocument.Bookmarks("\Page").Range.Select


Where am I?
Here are a few ideas about how to find where the cursor (Selection) or range has ended up.

Which page and line number is the cursor currently in?

pageNum = rng.Information(wdActiveEndAdjustedPageNumber)
lineNum = rng.Information(wdFirstCharacterLineNumber)

There are ways to find out where the 

Is the cursor currently in a table? Yes or no.

inAtable = rng.Information(wdWithInTable)

Which paragraph (table) is the cursor currently in?

Set rng = ActiveDocument.range(0, Selection.End)
paraNum = rng.Paragraphs.Count

Set rng = ActiveDocument.range(0, Selection.End)
tableNum = rng.Tables.Count

(The latter code pair only tells you, if you aren’t actually in a table, how many tables there above the cursor.)

One use of this is if you want to do something “from the current table onwards”. Here’s an example, which steps through the tables, one by one, and you can stop the macro if you get to one you want to edit. Then you just re-run the macro and carry on.

The there’s information on which column/row the cursor is in:

   myColNum = rng.Information(wdStartOfRangeColumnNumber)
   myRowNum = rng.Information(wdStartOfRangeRowNumber)


I’m not sure what this is for. Have a play and let me know! :-)
MsgBox Selection.Information(wdHorizontalPositionRelativeToPage)

(List of .Information items is shown at the end of the file.)

Sub StepThroughTables()
' Version 21.11.18
' Steps through tables, one by one

Set rng = ActiveDocument.range(0, Selection.End)
tableNum = rng.Tables.Count
totTables = ActiveDocument.Tables.Count
For i = tableNum + 1 To totTables
  ActiveDocument.Tables(i).Select
  Selection.Collapse wdCollapseStart
  Set rng = Selection.range.Duplicate
  ActiveDocument.ActiveWindow.LargeScroll down:=1
  ActiveDocument.ActiveWindow.SmallScroll down:=1
  Selection.MoveUp wdParagraph, 1
  rng.Select
  Selection.MoveEnd wdWord, 1
  myResponse = MsgBox("Continue?", vbQuestion + vbYesNoCancel)
  If myResponse <> vbYes Then Exit Sub
Next i
Beep
End Sub

Problems during long-running macros
When you want to stop a macro running (“I didn’t mean to run this particular macro!” or “This macro is taking too long!”), the theory is that you should be able to hold down the Ctrl key and press the Break key (unless you have a laptop that doesn’t possess a Break key, as I have!) and the macro should stop.

However, when a macro is running that’s very intensive, Word can get itself in a twist, and may totally ignore the Break key.

Worse still, if the user clicks on the screen, wondering if the macro has died, Word may well crash! I do try to warn people: “When a macro is running, DON’T CLICK THE SCREEN!” but it’s an instinctive reaction when you’re wondering what’s going on. I know, I do it myself!

So, if you’re going to run an intensive macro, and you fear that it might be long and tedious, open the Visual Basic first (use Alt-F11 – or if you then get a grey-only screen, go back to the Word file and use Alt-F8 and click Edit). Then move the VBA window so that you can see the top edge of this window. Why? (a) on that top line will be something like:

Microsoft Visual Basic for Applications - Chapter 04_PB - [NewMacros (Code)]

where “Chapter 04_PB” is the name of the file where the cursor is currently placed. Then when you run the macro, it changes to:

Microsoft Visual Basic for Applications - Chapter 04_PB [Running] - [NewMacros (Code)]

so you can see whether the macro is still running. If you want to stop the macro running, you can click the Reset (■) icon (like a DVD Stop icon) on the ribbon. In fact, you can click the Pause (║) icon, which will take you into Debug mode, so that you can see where the macro has got to and then, if you decide it’s OK and want to continue, click the Run (►) icon, or press F5.

What’s more, if the macro uses different files then the title line tells you which file currently has the input focus, i.e. the cursor or the current Selection).

However, this way of halting a macro isn’t 100% reliable. The VBA window itself does sometimes freeze – then you just have to crash Word and restart it. (You did remember to save the working file before running the macro, didn’t you?!)

So it’s worthwhile (I’d almost say essential) putting some DoEvent commands into the program at critical (busy) stages of its operation. This command doesn’t actually do anything specific, but it seems to let the Word window ‘catch up with’ VBA, making it more likely that Ctrl-Break, or Reset (or Pause) will work, and you’ll be able to exit cleanly from the macro.
Running other facilities from within a macro
You can run other macros from within a macro:

Application.Run MacroName:="AutoCurlyQuotesOFF"
Application.Run MacroName:="AutoListOff"

And you can run some of Word’s functions, though I haven’t found any rhyme or reason why some things work and others don’t (answers on a postcard, please!). These two work: 

Application.Run MacroName:="EditUndo"
Application.Run MacroName:="NextChangeOrComment"

but

Application.Run MacroName:="NavPaneSearch"

is a no-go, so for that, you have to use:

CommandBars("Navigation").Visible = True

However, if you use Application.Run MacroName:="EditReplace" then, after you’ve done your search, the EditReplace macro will still be running, and so when you close the F&R window, Word generates an error. So you have to instead use:

CommandBars("Menu Bar").Controls("Edit").Controls("Replace...").Execute

Either that, or you can add two error trapping lines:

On Error GoTo theEnd
Application.Run MacroName:="EditReplace"
 
theEnd:
End Sub

Also, you can sometimes use (for macros in the Normal template):

Call FRedit
Call AutoListOff

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                           

You can open the Comments pane with:

ActiveDocument.ActiveWindow.View.SplitSpecial = wdPaneComments

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                           

Here are some examples of other things you can do with Commandbars. To change the width of the Navigation pane and the Styles pane:

Application.CommandBars("Styles").Width = 200
Application.CommandBars("Navigation").Width = 200

The above is put to good use in this macro: 

Sub NavPaneCustomize()
' Version 09.01.21
' Opens the navigation pane where and how you want

h = 600
w = 400

' doSetUp = True
doSetUp = False

If doSetUp = True Then
  w = Application.CommandBars("Navigation").Width
  h = Application.CommandBars("Navigation").Height
  MsgBox "H: " & h & vbCr & vbCr & "W: " & w
  Exit Sub
End If

If Application.CommandBars("Navigation").Visible = False Then
  Application.CommandBars("Navigation").Visible = True
  'Application.CommandBars("Navigation").Position = msoBarRight
  Application.CommandBars("Navigation").Position = msoBarLeft
  'Application.CommandBars("Navigation").Position = msoBarFloating
  'Application.CommandBars("Navigation").Height = h
  Application.CommandBars("Navigation").Width = w
Else
  Application.CommandBars("Navigation").Visible = False
End If
End Sub


File handling
To find the name of the current file:

fileName = ActiveDocument.Name
fullFileName = ActiveDocument.FullName

These will give you, respectively, just the name of the file: “Chapter 04_PB.docx” or the whole address as well: “C:\MyFiles\WIP\MyCurrentBook\Chapter 04_PB.docx”

If you ask for the name of the current pane by using:

paneName = ActiveWindow.Caption

then you’ll probably get just the filename: “Chapter 04_PB” (without the ‘.docx’). However, if you’ve opened a second window on that file, you’ll get “Chapter 04_PB:01” or “Chapter 04_PB:02”.

If you want to close the current pane, to go back to a single view, use:

ActiveWindow.ActivePane.Close

Handling multiple files
I’ve written a range of different multi-file macros, so here I explain the code used to capture the names of the files in a folder, ready to “do something” with each of the files (or a sub-selection of those files).

	Check the number of documents currently open
docCount = Documents.Count
	Open the File Open dialogue box
Dialogs(wdDialogFileOpen).Show
	If the user has actually opened a document, then close it again
If Documents.Count > docCount Then ActiveDocument.Close
	Read the current directory
dirPath = CurDir()
	Point the filename reader, Dir(), to my directory
ChDir dirPath
	Use Dir() to read the name of the first file in this directory
	(you need the PathSeparator because it’s different
	on Macs from PCs)
myFile = Dir(CurDir() & Application.PathSeparator)
	Create a new file for the list
Documents.Add
numFiles = 0
	As long as Dir() has found a file...
Do While myFile <> ""
	and if it’s a Word-readable file (.doc, .docx or .rtf)...
  If InStr(LCase(myFile), ".doc") > 0 Or InStr(LCase(myFile), ".rtf") > 0 Then
	then enter its name into the list
    Selection.TypeText myFile & vbCr
	Count how many files there are
    numFiles = numFiles + 1
  End If
	Read the next file from the same directory
  myFile = Dir()
Loop
	Add the directory path at the top of the list
Selection.TypeText dirPath
	Read the directory name, but excluding the delimiter
Selection.MoveStartUntil cset:=":\", Count:=wdBackward
dirName = Selection

If you look in any of my multifile macros, you’ll see that I also sort the list of files into alphabetical order. That’s not necessary for PCs, but on Macs, the Dir() command doesn’t pull up the files in alphabetical order for some reason.
Looking through the open windows/files
On the face of it, this is very straightforward. You can look through each of a set of open windows in order to find if there is a particular file that the macro is looking for. However, it is one bit of code that has caused real headaches, over the years.

Looking for the ‘zzFReditList’ file...

gottaDoc = False
For Each myWnd In Application.Windows
  thisName = myWnd.Document.Name
  If InStr(thisName, "zzF") > 0 Then
    gottaDoc = True
    myWnd.Document.Activate
    Beep
    Exit For
  End If
Next myWnd

And the other method:

gottaDoc = False
For Each thisDoc In Documents
  thisName = thisDoc.Name
  If InStr(thisName, "zzF") > 0 Then
    gottaDoc = True
    thisDoc.Activate
    Exit For
  End If
Next thisDoc

Just looking in my ‘TheMacros’ file, I see that I use the former method thirteen times and the latter six times. What I now never use is:

numDocs = Application.Documents.Count
For i = 1 To numDocs
  Set thisDoc = Application.Documents(i)
  thisName = thisDoc.Name
  If InStr(thisName, "zzF") > 0 Then
    thisDoc.Activate
    Exit For
  End If
Next i

There were times when it came up with the error:

	Run-time error '5941':
	The requested member of the collection does not exist.

And when I checked, I found that numDocs was, say four when, in fact, there were only three open Word files, so the fourth file it was looking for didn’t exist. It wasn’t a repeatable error – a programmer’s nightmare!

So that’s why I use the command: For Each ... In.

But remember that, with the In Application.Windows version, the user might have two or more windows open for each file. If that’s crucial then you could use something like this (which I use in FRedit):

allFileNames = ""
For Each myDoc In Documents
  myFullName = myDoc.FullName
  If InStr(allFileNames, myFullName) = 0 Then

... do various things with this myDoc

    allFileNames = allFileNames & myFullName
  End If
Next myDoc

Copy text out into a new file
If you want to scrape the text out into a new file, perhaps so that you can analyse it without affecting the original, the natural thought would be to use copy and paste – a bad idea for all sorts of reasons! Instead, you can use this:

Set rng = ActiveDocument.Content
Documents.Add
Selection.FormattedText = rng.FormattedText

Or if you only want pure text and no formatting, use:

Set rng = ActiveDocument.Content
Documents.Add
Selection.Text = rng.Text

Copying into a new file in this way avoids using the clipboard, which is then available for other uses, if necessary, and it seems to be slightly quicker, but it’s only fractions of a second. (It also avoids the error that used to annoy me when I closed Word: “You placed a lot of content on the clipboard. Do you want this content to be available to other applications after you quit Word?”)

Note that this only copies the main text, not text in end/footnotes or text boxes. If you want absolutely all the text, you could use my CopyTextWithSomeFeatures macro, though it doesn’t give you the full formatting (styles etc.) that you get by using FormattedText, but rather just the pure text, plus a remembrance of bold, italic, super/subscript, etc.:

Call CopyTextWithSomeFeatures

Doing things in specified places/files	Comment by Paul Beverley: Done as far as here.
You can do something in a specific named file. For example, to type some text at the top of a specific file:

Set rng = Documents("zzSwitchList.doc").Content
rng.InsertBefore Text:="Hello" & vbCr

but remember that if the file ‘zzSwitchList.doc’ is not open, the macro will give a ‘Bad file name’ error.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                           

If you have some text selected, you could do things at different places within it. For example, this extract finds the third paragraph within the selection, then makes the second word of the paragraph bold and the fourth character within that word big, selects it and then goes back to the original selection after you’ve pressed OK:

Set rngSel = Selection.range.Duplicate
Set rng = rngSel.Paragraphs(3).range
Set rng = rng.Words(4)
rng.Font.Bold = True
Set rng = rng.Characters(2)
rng.Font.Size = 40
rng.Select
MsgBox "Look!"
rngSel.Select

but beware that if it said Set rng = rngSel.Paragraphs(3).range when only two paragraphs were selected, it would generate an error and ditto if the numbers of words and characters are more than are available. But I’m just trying to demonstrate what different ranges and selections you can make.

Have you noticed that to set a range in paragraphs, you have to use Paragraphs(30).range, whereas for Words and Characters, you don’t need the .range. I’ve no idea why! Each time I use these, I try with or without a .range and see if it errors (I can never remember).

And you can do sentences to:

Set rng = rngSel.Sentences(3)

And to highlight a selection or a range in a colour, or change font colour, use, for example:

Selection.range.HighlightColorIndex = wdGray25

Selection.range.Font.ColorIndex = wdBlue

' Make the third word of the selection red
Set rng = Selection.range.Duplicate
rng.Words(3).Font.Color = wdColorRed

(See below for explanation of Color/ColourIndex.)
Find and replace
To find and replace only within the selected area:

Set rng = Selection.range.Duplicate

With rng.Find
 .ClearFormatting
 .Replacement.ClearFormatting
 .Text = "cat"
 .Wrap = False
 .Replacement.Text = "dog"
 .Execute Replace:=wdReplaceAll
End With

You have to set .Wrap = False because if you were to use .Wrap = wdFindContinue it would F&R the whole of the document (well, the main text story).

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                           

If you do an F&R from within a macro, VBA assumes only the main story. So if you want to do the F&R in the foot(end)notes as well, use:

fnNum = ActiveDocument.Footnotes.Count
enNum = ActiveDocument.Endnotes.Count

For j = 1 To 3
  If j = 1 And fnNum = 0 Then j = 2
  If j = 2 And enNum = 0 Then j = 3
  Select Case j
    Case 1: Set rng = ActiveDocument.StoryRanges(wdFootnotesStory)
    Case 2: Set rng = ActiveDocument.StoryRanges(wdEndnotesStory)
    Case 3: Set rng = ActiveDocument.Content
  End Select
  DoEvents
  With rng.Find
    .ClearFormatting
    .Replacement.ClearFormatting
    .Text = myFind
    .Replacement.Text = myReplace
    .Wrap = wdFindContinue
    .Execute Replace:=wdReplaceAll
  End With
Next j

You can also extend the F&R to the text in text boxes, but this is more complex. FRedit has that facility, so if you need to F&R your textboxes, you’ll need to pinch that section of code frpom FRedit.

Finding things – words
You can’t use F&R to say “Find any one of the following bits of text”, but if you’re trying to find any one of a number of individual words, you can use something like this. It was aimed at the task of selecting the next conjunction, but it does a search of the selected text for “the next occurrence of any one of these words”. If no text is selected, it searches from the cursor towards the end of the file.


Sub SearchTheseWords()
' Version 28.11.18
' Finds the next occurrence of any of a list of words

myWords = ":and:or:but:so:yet:if:"

Set rng = Selection.range.Duplicate
' If only a tiny selection...
If rng.Words.Count < 3 Then rng.Collapse wdCollapseEnd
' or nothing selected, search from cursor to the end of the file
If rng.Start = rng.End Then
  rng.End = ActiveDocument.Content.End
End If

myWords = ":" & myWords & ":"
For Each wd In rng.Words
  myTest = ":" & LCase(Trim(wd)) & ":"
  If InStr(myWords, myTest) > 0 Then
    wd.Select
    Exit For
  End If
Next wd
End Sub

Finding things – highlights/font attributes
The problem with searching for a particular font colour is that if your selection/range includes more than one colour, the colour number is reported as 9999999. So to be sure to find one colour only, you’d have to check every single character – slooow!

An alternative tactic is to check the colour of sections of text. If you do not get the answer 9999999, you know whether that section is/is not the colour you want. If it has mixed colours, then subdivide into smaller sections.

My technique is to check paragraphs, then words and then, if necessary, characters. So in this code section, we’re looking for text in highlight colour myHighlight and then applying a strikethrough to that colour of highlighted text.


mixedColour = 9999999
For Each par In rng.Paragraphs
  col = par.range.HighlightColorIndex
  If col <> mixedColour Then
    If col = myHighlight Then par.range.Font.StrikeThrough = False
  Else
    For Each wd In par.range.Words
      col = wd.HighlightColorIndex
      If col <> mixedColour Then
        If col = myHighlight Then wd.Font.StrikeThrough = False
      Else
        For Each ch In wd.Characters
          col = ch.HighlightColorIndex
          If col <> mixedColour Then
            If col = myHighlight Then ch.Font.StrikeThrough = False
          End If
          DoEvents
        Next ch
      End If
      DoEvents
    Next wd
  End If
  DoEvents
Next par

Having watched a similar piece of code in action (using Selection, not rng), I could see that it was going quite slowly, so I had an idea for speeding it up: instead of using paragraph −> word −> character, I decided to use:

paragraph −> sentence −> word −> character.

Unfortunately, it fails miserably! If you want to see why, run this code segment:

ActiveDocument.Content.HighlightColorIndex = wdBrightGreen
For Each sn In ActiveDocument.Sentences
  sn.HighlightColorIndex = wdNoHighlight
Next sn

This should highlight the whole text and then remove the highlight from every single sentence in the document, shouldn’t it? Well, you’ll see that it leaves some text in green; it misses out some of the sentences, usually associated with ?, !, etc., and/or parentheses.

Or you could use this macro:

Sub HighlightAllSentences()
For Each sn In ActiveDocument.Sentences
  i = i + 1
  If i = 2 Then myColour = wdColorRed: i = 0
  If i = 1 Then myColour = wdColorBlue
  sn.Font.Color = myColour
  sn.Font.Bold = True
Next sn
End Sub


Nice idea, Paul (not)!

Later: I’ve just tried the following, and, unlike the For Each method, it works 100%!

ActiveDocument.Content.HighlightColorIndex = wdBrightGreen
For i = 1 To ActiveDocument.Sentences.Count
    ActiveDocument.Sentences(i).HighlightColorIndex = wdNoHighlight
  DoEvents
Next i

i.e. it does catch every single semtence.

OK, so I can try the ‘paragraph −> sentence −> word −> character’ method again, provided I use the For i = 1 To Whatever.Count.

Here is a segment of code derived from what I’ve just written into FRedit. If you try it, it will find – in the fastest possible way – any text in bright green, amongst other colours of highlighting.

For Each par In rngNow.Paragraphs
  If par.range.HighlightColorIndex > 9999 Then
    For x = 1 To par.range.Sentences.Count
      If par.range.Sentences(x).HighlightColorIndex > 9999 Then
        For Each wd In par.range.Words
          If wd.HighlightColorIndex > 9999 Then
            For Each ch In wd.Characters
              If ch.HighlightColorIndex = fHiColour Then
                ch.Font.Emboss = True
              End If
            Next ch
          Else
            If wd.HighlightColorIndex = fHiColour Then
              wd.Font.Emboss = True
            End If
          End If
          DoEvents
        Next wd
      End If
      DoEvents
    Next x
  Else
    If par.range.HighlightColorIndex = fHiColour Then
      If Len(par.range.Text) > 1 Then par.range.Font.Emboss = True
    End If
  End If
Next par
fHiColour = wdBrightGreen
Set rngNow = ActiveDocument.Content
rngNow.Font.Emboss = False
For Each par In rngNow.Paragraphs
  If par.range.HighlightColorIndex > 9999 Then
    For x = 1 To par.range.Sentences.Count
      If par.range.Sentences(x).HighlightColorIndex > 9999 Then
        For Each wd In par.range.Sentences(x).Words
          If wd.HighlightColorIndex > 9999 Then
            For Each ch In wd.Characters
              If ch.HighlightColorIndex = fHiColour Then
                ch.Font.Emboss = True
              End If
            Next ch
          Else
            If wd.HighlightColorIndex = fHiColour Then
              wd.Font.Emboss = True
            End If
          End If
          DoEvents
        Next wd
      Else
        If par.range.Sentences(x).HighlightColorIndex = fHiColour Then
          par.range.Sentences(x).Font.Emboss = True
        End If
      End If
      DoEvents
    Next x
  Else
    If par.range.HighlightColorIndex = fHiColour Then
      If Len(par.range.Text) > 1 Then par.range.Font.Emboss = True
    End If
  End If
Next par

In case you’re interested to know, this code is rarely used by FRedit because it’s only required if the user is asking to change something in one highlight colour into a different highlight colour. For example, here the user is asking to leave most of the cats alone and only change those cats that are highlighted in green.

cat|dog

Because you can’t do an F&R for a specific colour of highlight (only whether highlighting is ON or OFF), I use the above code to add an Emboss attribute to all the text that’s in a particular highlight colour. Then I can do the F&R with Emboss as one Find characteristic, and then later remove all the Embossing. (This is explained in the section below about F&R.)
More about F&R
If you are doing F&Rs using Selection, and you want to preserve the original Find and Replace values after the macro has finished then use, for example:

oldFind = Selection.Find.Text
oldReplace = Selection.Find.Replacement.Text

With Selection.Find
  .ClearFormatting
  .Replacement.ClearFormatting
  .Text = "this"
  .Replacement.Text = "that"
  .Execute Replace:=wdReplaceAll
End With

Selection.Find.Text = oldFind
Selection.Find.Replacement.Text = oldReplace

However, if you only use ranges, such as: 

Set rng = ActiveDocument.Content
With rng.Find
  .ClearFormatting
  .Replacement.ClearFormatting
  .Text = "this"
  .Replacement.Text = "that"
  .Execute Replace:=wdReplaceAll
End With

then you should find that the original Find and Replace value are retained (well, they are with Word 2010).

Search and destroy (joke!)
The following is a dummy macro that I use time and again. It sets up a search for something and then repeatedly looks for that ‘thing’ and, if it finds it, it does something to it, and then looks to see if there’s another occurrence, but if  there are no more of them, it stops.

First set a range:

Set rng = ActiveDocument.Content

or use...

Set rng = Selection.range.Duplicate

then...

' Go and find the first occurrence
With rng.Find
  .ClearFormatting
  .Replacement.ClearFormatting
  .Text = "thing"
  .Wrap = wdFindStop
  .Replacement.Text = ""
  .Forward = True
  .MatchWildcards = False ' Set as required
  .MatchWholeWord = False
  .MatchSoundsLike = False
  .Execute
End With

myCount = 0 ' Set as required
Do While rng.Find.Found = True
  myCount = myCount + 1

' Note where the end of the found item is
  endNow = rng.End

' Do various things with this “thing” it has found
  
' Be sure you're past the previous occurrence
  rng.End = endNow
  rng.Collapse wdCollapseEnd

' Go and find the next occurence (if there is one)
  rng.Find.Execute
Loop
MsgBox "Changed: " & myCount

Changing attributes of a selection by F&R
If you want to change various font attributes in a selection with F&R, you can specify them as follows. 

Set rng = Selection.range.Duplicate
With rng.Find
  .ClearFormatting
  .Replacement.ClearFormatting
  .Text = "i"
  .MatchCase = False
  .Wrap = False
  .Replacement.Text = "^&"
  .Replacement.Font.Size = 20
  .Replacement.Font.Color = wdColorRed
  .Replacement.Font.StrikeThrough = True
  .Replacement.Font.Underline = True
  .Replacement.Highlight = True
  .Execute Replace:=wdReplaceAll
End With

Note that I used .Replacement.Font.Color = wdColorRed which is the colour as set by hexadecimal (number to base 16) values, in this case, wdColorRed is 000000FF. I could have used: .Replacement.Font.ColorIndex = wdRed, in this case, wdRed has the value 6.

Changing highlight colours using F&R is different. Although you can give the font colour a value in an F&R, such as wdColorRed, highlighting is only ever True or False. If True, then it will appear in the currently selected highlight colour – whatever that happens to be. So if want to use a specific highlight colour with F&R, you need to memorise the current highlight colour, change the colour, use it and then, before you exit the macro, restore the original highlight colour:
 
oldColour = Options.DefaultHighlightColorIndex
Options.DefaultHighlightColorIndex = wdBrightGreen

' Do your find and replace here

Options.DefaultHighlightColorIndex = oldColour
Reading the font colour
For the font colour of the current selection:

myColourIndex = Selection.range.Font.ColorIndex
myColour = Selection.range.Font.Color

The first gives the simple colour number, so red is 6, and green is 11. The second is actually a hex number, so to see it easily (meaningfully), use Hex(myColour), for which, red is 000000FF, and green is 0050B000 and black is FF000000.

If the selection includes more than one colour, both Color and ColorIndex give the seven-digit value 9999999 (a meaningless 98967F in hex).

For the colour used by the style within the selection:

paraColourIndex = ActiveDocument.Styles(Selection.range.Style).Font.ColorIndex
paraColour = ActiveDocument.Styles(Selection.range.Style).Font.Color

The following macro checks a selection, showing if another colour has been applied to the basic font colour of that style, and whether there is a mix of colours:


Sub FontColourReader()
' Version 21.11.18
' Reads style font colour + any applied colour

myMix = 9999999
paraColourIndex = ActiveDocument.Styles(Selection.range.Style).Font.ColorIndex
paraColour = ActiveDocument.Styles(Selection.range.Style).Font.Color

myColourIndex = Selection.range.Font.ColorIndex
myColour = Selection.range.Font.Color

myMessage = ""
myMessage = myMessage & "Style font colour = " & Hex(paraColour) & vbCr
If myColour = myMix Then
  myMessage = myMessage & "Mixed colours" & vbCr
Else
  If paraColour = myColour Then
    myMessage = myMessage & "No applied colour" & vbCr
  Else
    myMessage = myMessage & "Applied colour = " & Hex(myColour) & vbCr
  End If
End If
MsgBox myMessage

myMessage = ""
myMessage = myMessage & "Style font colour = " & paraColourIndex & vbCr
If myColourIndex = myMix Then
  myMessage = myMessage & "Mixed colours" & vbCr
Else
  If paraColourIndex = myColourIndex Then
    myMessage = myMessage & "No applied colour" & vbCr
  Else
    myMessage = myMessage & "Applied colour = " & myColourIndex & vbCr
  End If
End If
MsgBox myMessage
End Sub
Reading the font name and size
This macro checks a selection, showing if another font name or font size has been applied to the basic font name and size of that style, and whether there is a mix of names/sizes. The font size returned for a mix is, again, 9999999, but for a selection of mixed font names, it returns a null string, "":

Sub FontNameAndSizeReader()
' Version 21.11.18
' Reads style font Name + any applied Name

myMixName = ""
paraName = ActiveDocument.Styles(Selection.range.Style).Font.Name
myName = Selection.range.Font.Name

myMessage = ""
myMessage = myMessage & "Style font name = " & paraName & vbCr
If myName = myMixName Then
  myMessage = myMessage & "Mixed names" & vbCr
Else
  If paraName = myName Then
    myMessage = myMessage & "No applied name" & vbCr
  Else
    myMessage = myMessage & "Applied name = " & myName & vbCr
  End If
End If
MsgBox myMessage

myMix = 9999999
paraSize = ActiveDocument.Styles(Selection.range.Style).Font.Size
mySize = Selection.range.Font.Size

myMessage = ""
myMessage = myMessage & "Style font Size = " & paraSize & vbCr
If mySize = myMix Then
  myMessage = myMessage & "Mixed Sizes" & vbCr
Else
  If paraSize = mySize Then
    myMessage = myMessage & "No applied size" & vbCr
  Else
    myMessage = myMessage & "Applied size = " & mySize & vbCr
  End If
End If
MsgBox myMessage
End Sub
Information about styles
For a description of a given style use, say, ActiveDocument.Styles("Heading 1").Description, and the style can also be specified as, say, wdStyleHeading1, as here:

nStyle = ActiveDocument.Styles(wdStyleNormal).Description & vbCr & vbCr
H1Style = ActiveDocument.Styles(wdStyleHeading1).Description & vbCr
Selection.TypeText Text:="Normal style: " & nStyle
Selection.TypeText Text:="Heading 1: " & H1Style

The result, from this file, is:

Normal style: Font: (Default) Times New Roman, 11 pt, Left
    Line spacing:  single, Widow/Orphan control, Style: Quick Style

Heading 1: Font: (Default) Arial, 22 pt, Bold, Kern at 16 pt, Space
    Before:  18 pt
    After:  3 pt, Keep with next, Level 1, Style: Linked, Quick Style
    Based on: Normal
    Following style: Normal

Applying shading, foreground and background colours
I confess to not knowing what the difference is between foreground and background colours, but have a play and see what you can work out!

' Add 10% grey tinted background
Selection.Shading.Texture = wdTexture10Percent
' Back to no tint
Selection.Shading.Texture = wdTextureNone

' Yellow background
Selection.Shading.BackgroundPatternColor = wdColorYellow
' Return to no background
Selection.Shading.BackgroundPatternColor = wdColorAutomatic

' Yellow foreground (has a remarkably similar effect!)
Selection.Shading.ForegroundPatternColor = wdColorYellow
' This makes it black!
Selection.Shading.ForegroundPatternColor = wdColorAutomatic
' This makes it white
Selection.Shading.ForegroundPatternColor = wdColorWhite

' Also available for clearing background
Selection.Shading.Texture = wdTextureNone

' For some weird effects, try this
With Selection.Shading
 .Texture = wdTextureDarkDiagonalCross
 .ForegroundPatternColorIndex = wdBlue
 .BackgroundPatternColorIndex = wdYellow
End With

Beep and double-beep!
Doing a beep is obvious, but it’s sometimes useful to give the user a double-beep. For example, SpellingSuggest gives a single beep if the word is spelt correctly, but a double-beep if it’s a spelling error and has therefore been corrected. You may need to increase the delay time (0.2) if your system gives two beeps that just sound like one.

Beep
myTime = Timer
Do
Loop Until Timer > myTime + 0.2
Beep

Timing things
In order to time some process, say an analysis, you record the time at the beginning:

timeStart = Timer

and then at the end:

totTime = Timer - timeStart

If you want to give the user a chance to not show how long it took then put, at the beginning,

showTime = True or False

 and then

If showTime = True And totTime > 60 Then
  MsgBox ((Int(10 * totTime / 60) / 10) & _
       "  minutes")
End If
Setting up arrays
You can set up an array of words (or phrases) so that you can do things with them, one by one. In this case, it’s just displaying the words to the user, but there will obviously be more interesting applications!

allWords = ",red,blue,green"
myWord = Split(allWords, ",")
numWords = UBound(myWord)
For i = 1 To numWords
  MsgBox myWord(i)
Next i

The comma is what is called the ‘list separator’, but note too that there is a comma in front of my first word. That’s because arrays were invented by programmers and they think that number ranges should start with zero! So if the list was:

allWords = "black,red,blue,green"

then you would find that myWord(0) (that’s zero, not capital ‘O’) has the value "black".

Note that the character used as a list separator can be anything you like. In the following, there are commas in the text, so I’ve used the vertcal bar (as used in FRedit):

allWords = "|fish, chips, and peas|ham, egg, and chips|pie, mash, and beans"
myWord = Split(allWords, "|")
numWords = UBound(myWord)
For i = 1 To numWords
  MsgBox myWord(i)
Next i

User input
We’ve already used, say, MsgBox myWord(i) as a way of displaying something, but the only input the user can make is OK. If you press the Escape key, it has exactly the same effect of making the macro continue on the line after the MsgBox.

Another more flexible example of using MsgBox is:

myResponse = MsgBox(myWord(i), vbOKCancel, "Food display")
If myResponse <> vbOK Then Exit Sub

So clicking Cancel or pressing the Escape key stops the macro.

And (using the example from the arrays section) you can also offer a No option:

allWords = "|Fish, chips, and peas|Ham, egg, and chips|Pie, mash, and beans"
myWord = Split(allWords, "|")
For i = 1 To numWords
  myResponse = MsgBox(myWord(i), vbYesNoCancel, "Food display")
  If myResponse = vbNo Then Beep
  If myResponse = vbCancel Then Exit Sub
Next i

Here’s the output:
[image: ]

Here’s another example
myResponse = MsgBox("Generate error word list?", vbQuestion _
        + vbYesNoCancel, "AuthorDateFormatter")
If myResponse = vbCancel Then Exit Sub
If myResponse = vbYes Then generateList = True

Here’s the output:
[image: ]
If you want to input some text, you could use, say:

mySurname = InputBox("Surname?", "My naming macro")

If the user just presses Enter without typing in a name, or presses Escape or clicks Cancel, then myInput is a zero-length string, "".

Here’s the output:
[image: ]

If you want to input a number, you could use, say:

myInput = InputBox("Option number?", "Macro name")
myNumber = Val(myInput)

If the user just presses Enter without typing in a number, or presses Escape or clicks Cancel, then myNumber has the value zero.

You can also use a default value to offer the user, such as the previous option chosen by the user:

myDefaultValue = "Whatever!"

myRequirement = InputBox("What do you want?", "Macro name", myDefaultValue)

String handling techniques
The following code isn’t rocket science:

myText = "My sample string"

myLeft = Left(myText, 2)
myRight = Right(myText, 4)
myMiddle = Mid(myText, 4, 6)

For i = 1 To Len(myText)
  myChar = Mid(myText, i, 1)
  Debug.Print myChar
Next

I’m sure you’ll be able to work out that the three commands generate: ‘My’, ‘ring’ and ‘sample’.

Then the loop goes through the individual characters and displays them one by one in VBA’s ‘Immediate mode’ area. (Press Ctrl-G in VBA to open the Immediate mode window.)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                           

To select the part of a string after a specific character, you can use InStr.

This example extracts the text inside the parentheses:

parenOpen = InStr(mySample, "(")
myText = Mid(mySample, parenOpen + 1)

parenClose = InStr(myText, ")")
myText = Left(myText, parenClose - 1)

Or you could do it like this.

parenOpen = InStr(mySample, "(")
parenClose = InStr(mySample, ")")

myLen = parenClose - parenOpen
myText = Mid(mySample, parenOpen + 1, myLen - 1)

The thing you have to be careful of is what will happen if one of the characters is missing. If there’s no close parenthesis, parenClose comes out as zero, so you get an ‘Invalid procedure call or argument’ in both cases.

Using the Like function
This function allows some flexibility in comparing strings. You have ‘?’ to mean a single character, and ‘*’ to mean any text.

myTest = "?ome*g"

Dim myText(4) As String
myText(1) = "Something"
myText(2) = "something"
myText(3) = "somewhat"
myText(4) = "homecoming"

For i = 1 To 4
 If myText(i) Like myTest Then
 MsgBox myText(i) & " is a match"
 Else
 MsgBox myText(i) & " is NOT a match"
 End If
Next i

For this test, all three will be a match, except ‘somewhat’.

Probably more helpful are tests as in this example:

Do
 myInput = InputBox("Enter some text")

 If myInput Like "[A-Z]" Then
 MsgBox "Single uppercase letter"
 End If

 If Left(myInput, 3) Like "[A-Z][a-z]*" Then
 MsgBox "Looks like a word with an initial capital"
 End If

 If myInput Like "[yY]*" Then
 MsgBox "Yes!!"
 End If

 If myInput Like "[Nn]*" Then
 MsgBox "No way!!"
 End If

 If myInput Like "#" Then
 MsgBox "Single digit"
 End If

 If myInput Like "[0-9]" Then
 MsgBox "Single digit"
 End If
Loop Until myInput = ""

I think these should be reasonably self-explanatory. Note that ‘#’ has the same meaning as ‘[0-9]’
Error handling
To switch error handling on:
On Error GoTo ReportIt

Then at the end of the macro, you can use something like this:

Exit Sub
ReportIt:
If Err.Number = 5174 Then
 MsgBox ("Couldn't find file: " & myFileName)
Else
 On Error GoTo 0
 Resume
End If

End Sub

What happens here is that when an error occurs, if it’s a File Not Found error (which is the type of error that can be detected by testing whether Err.Number = 5174), you report that to the user, telling the which file it couldn’t find, and then exit the macro.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                      
I’m never quite sure what On Error Resume Next does, but let’s look at an example:

(Comment from the ever-helpful Howard Silcock: When you include this statement, if any subsequent statement generates an error, then the error is ignored and execution proceeds to the next statement. This remains in force until you include a statement such as On Error Goto 0, which resets to the normal behaviour.)

We’re searching of a specific file, tryThisName, and if it’s not found we report back to the user.

On Error Resume Next
                If an error occurs, keep going on to this next line...
If tryThisName <> "" Then
                Try to open a file of this name...
  Documents.Open tryThisName
                If there isn’t one, it errors
  If Err.Number = 5174 Then
                Tell the user you couldn’t find it
    MsgBox ("Can't find file: " & tryThisName)
                Clear the error condition
    Err.Clear
  Else
                If we did find a file, switch the error reporting off, just in case some
                other error occurs...
    On Error GoTo 0
                Now we can carry on as normal...
    Application.Resize Width:=myWidth, Height:=myHeight
    Set wasSelected = Selection.range.Duplicate
    Selection.HomeKey Unit:=wdStory
    With Selection.Find
    etc. etc. etc.

  End If
End If


If application visibility is being switched off, you do need an error handler to switch it back on because all the Word windows will be invisible, if not!

On Error GoTo ReportIt

and then...

ReportIt:
Application.Visible = True
On Error GoTo 0
Resume
End Sub

Similarly, if you’re switching ScreenUpdating off, to speed up execution, then add an error-handler to switch it back on again.

On Error GoTo ReportIt

and then...

ReportIt:
Application.ScreenUpdating = True
On Error GoTo 0
Resume
End Sub
Random text
For five paragraphs of 10 ‘Latin’ sentences each, just type:

=lorem(5,10)

Here’s an example paragraph of 10 sentences:

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar ultricies, purus lectus malesuada libero, sit amet commodo magna eros quis urna. Nunc viverra imperdiet enim. Fusce est. Vivamus a tellus. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Proin pharetra nonummy pede. Mauris et orci. Aenean nec lorem.

And or five paragraphs of 10 ‘English’ sentences each, use:

=rand(5,10)

Here’s an example paragraph of just four sentences (they’re longer than the Latin ones):

On the Insert tab, the galleries include items that are designed to coordinate with the overall look of your document. You can use these galleries to insert tables, headers, footers, lists, cover pages, and other document building blocks. When you create pictures, charts, or diagrams, they also coordinate with your current document look. You can easily change the formatting of selected text in the document text by choosing a look for the selected text from the Quick Styles gallery on the Home tab.

And here’s another one, sent in by Ken Endacott:

=rand.old(5,10)

Here’s an extract of what it produces:

The quick brown fox jumps over the lazy dog. The quick brown fox jumps over the lazy dog. The quick brown fox jumps over the lazy dog. The quick brown fox jumps over the lazy dog. The quick brown fox jumps over the lazy dog. The quick brown fox jumps over the lazy dog.

And I have them in my MultiSwitch list as:

ll
=lorem(5,10)

ee
=rand(5,10)

Really useful, if you need some text to play with.

All sorts of information
There’s lots of information available from Selection.Information()

e.g. Selection.Information(wdInCommentPane)

(Confession time! I found this on the internet ages ago, but I can’t acknowledge the source as I can’t now find where it came from, sorry. It said it was for Word 2003, but the ones I’ve tried have worked OK.)

wdActiveEndAdjustedPageNumber returns the number of the page that contains the active end of the specified selection or range. If you set a starting page number or make other manual adjustments, returns the adjusted page number (unlike wdActiveEndPageNumber).

wdActiveEndPageNumber returns the number of the page that contains the active end of the specified selection or range, counting from the beginning of the document. Any manual adjustments to page numbering are disregarded (unlike wdActiveEndAdjustedPageNumber).

wdActiveEndSectionNumber returns the number of the section that contains the active end of the specified selection or range.

wdAtEndOfRowMarker returns True if the specified selection or range is at the end-of-row mark in a table.

wdCapsLock returns True if Caps Lock is in effect.

wdEndOfRangeColumnNumber returns the table column number that contains the end of the specified selection or range.

wdEndOfRangeRowNumber returns the table row number that contains the end of the specified selection or range.

wdFirstCharacterColumnNumber returns the character position of the first character in the specified selection or range. If the selection or range is collapsed, the character number immediately to the right of the range or selection is returned (this is the same as the character column number displayed in the status bar after "Col").

wdFirstCharacterLineNumber returns the character position of the first character in the specified selection or range. If the selection or range is collapsed, the character number immediately to the right of the range or selection is returned (this is the same as the character line number displayed in the status bar after "Ln").

wdFrameIsSelected returns True if the selection or range is an entire frame or text box.

wdHeaderFooterType returns a value that indicates the type of header or footer that contains the specified selection or range, as shown in the following table.

wdHorizontalPositionRelativeToPage returns the horizontal position of the specified selection or range; this is the distance from the left edge of the selection or range to the left edge of the page measured in points (1 point = 20 twips, 72 points = 1 inch). If the selection or range isn't within the screen area, returns −1.

wdHorizontalPositionRelativeToTextBoundary returns the horizontal position of the specified selection or range relative to the left edge of the nearest text boundary enclosing it, in points (1 point = 20 twips, 72 points = 1 inch). If the selection or range isn't within the screen area, returns - 1.

wdInClipboard For information about this constant, consult the language reference Help included with Microsoft Office Macintosh Edition.

wdInCommentPane returns True if the specified selection or range is in a comment pane.

wdInEndnote returns True if the specified selection or range is in an endnote area in print layout view or in the endnote pane in normal view.

wdInFootnote returns True if the specified selection or range is in a footnote area in print layout view or in the footnote pane in normal view.

wdInFootnoteEndnotePane returns True if the specified selection or range is in the footnote or endnote pane in normal view or in a footnote or endnote area in print layout view. For more nformation, see the descriptions of wdInFootnote and wdInEndnote in the preceding paragraphs.

wdInHeaderFooter returns True if the selection or range is in the header or footer pane or in a header or footer in print layout view. 

	Value
	Type of header or footer

	−1
	None (the selection or range isn't in a header or footer)

	0
	Even page header

	1
	Odd page header (or the only header, if there aren’t odd and even headers)

	2
	Even page footer

	3
	Odd page footer (or the only footer, if there aren’t odd and even footers)

	4
	First page header

	5
	First page footer



wdInMasterDocument returns True if the selection or range is in a master document (that is, a document that contains at least one subdocument).

wdInWordMail returns True if the selection or range is in [as the original text of this item read...] the header or footer pane or in a header or footer in print layout view. [That’s obviously someone’s copy and paste from the earlier item on wdInHeaderFooter! I don’t know what it should say as I do all my email on an old-fashioned Acorn Computers email system. Any ideas for a corrected text here, please?]

	Value
	Location

	0
	The selection or range isn’t in an email message.

	1
	The selection or range is in an email message you are sending.

	2
	The selection or range is in an email you are reading.



wdMaximumNumberOfColumns returns the greatest number of table columns within any row in the selection or range.

wdMaximumNumberOfRows returns the greatest number of table rows within the table in the specified selection or range.

wdNumberOfPagesInDocument returns the number of pages in the document associated with the selection or range.

wdNumLock returns True if Num Lock is in effect.

wdOverType returns True if Overtype mode is in effect. The Overtype property can be used to change the state of the Overtype mode.

wdReferenceOfType returns a value that indicates where the selection is in relation to a footnote, endnote, or comment reference, as shown in the following table. 

	Value
	Description

	−1
	The selection or range includes but isn’t limited to a footnote, endnote, or comment reference.

	0
	The selection or range isn’t before a footnote, endnote, or comment reference.

	1
	The selection or range is before a footnote reference.

	2
	The selection or range is before an endnote reference.

	3
	The selection or range is before a comment reference.



wdRevisionMarking returns True if change tracking is in effect.

wdSelectionMode returns a value that indicates the current selection mode, as shown in the following table. 

	Value
	Selection mode

	0
	Normal selection

	1
	Extended selection (‘EXT’ appears on the status bar)

	2
	Column selection. (‘COL’ appears on the status bar)



wdStartOfRangeColumnNumber returns the table column number that contains the beginning of the selection or range.

wdStartOfRangeRowNumber returns the table row number that contains the beginning of the selection or range.

wdVerticalPositionRelativeToPage returns the vertical position of the selection or range; this is the distance from the top edge of the selection to the top edge of the page measured in points (1 point = 20 twips, 72 points = 1 inch). If the selection isn't visible in the document window, returns −1.

wdVerticalPositionRelativeToTextBoundary returns the vertical position of the selection or range relative to the top edge of the nearest text boundary enclosing it, in points (1 point = 20 twips, 72 points = 1 inch). This is useful for determining the position of the insertion point within a frame or table cell. If the selection isn't visible, returns −1.

wdWithInTable returns True if the selection is in a table.

wdZoomPercentage returns the current percentage of magnification as set by the Percentage property.

Example
This example displays the current page number and the total number of pages in the active document.

MsgBox "The selection is on page " & _
    Selection.Information(wdActiveEndPageNumber) & " of page " _
    & Selection.Information(wdNumberOfPagesInDocument)



If the selection is in a table, this example selects the table.

If Selection.Information(wdWithInTable) Then _
    Selection.Tables(1).Select



This example displays a message that indicates the current section number.

Selection.Collapse Direction:=wdCollapseStart
MsgBox "The insertion point is in section " & _
    Selection.Information(wdActiveEndSectionNumber)


[ignore] FRedit list for formatting listings		
~^t*^13|^&

Genesis of a macro
What I want to do here is the narrate what happened as I wrote a macro, hoping that the process itself will illustrate various techniques. Here goes...

The issue was that someone had seen my NumbersToText macro, which can whizz along through the text and, when it finds a number as figures, e.g. ‘342 soldiers’, it changes it to ‘three hundred and forty-two soldiers’, and they asked if there was a macro that would change ‘three hundred and forty-two soldiers’ into ‘342 soldiers’.

The answer was no, but there is now: TextToNumber. So here’s the story.
Analyse the problem
The first stage was to think about all the ways in which numbers up to 999 only. But that illustrates the problem of writing up about macros. As soon as I wrote that sentence, I realised that I really ought to add 1000! I’ll do it when I’ve finished the write-up.) Here’s some rubbish text. THe b;lue are the normal ways (in UK) that we express numbers in words, and the pink are a few ‘funnies’, which includes the American way of expressed numbers. (Sorry, no offence to my transatlantic cousins intended!)

Sample here is three bits of text with forty things. But sixteen then three hundred and forty-two soldiers a hundred and forty-two marched up the hill, followed by a hundred boy scouts and one hundred and sixteen girl guides three hundred only is it now things like he had forty two soldiers seventy-nine and American three hundred forty-two Ah, but what about two hundred and six but what about two hundred and sixteen but what about two hundred and forty. No chance with four hundred two, I suppose?

As you can see, it’s going to be a quite complex process writing this macro.

List all the possible words
myUnits = ":one:two:three:four:five:six:seven:eight:nine:ten"
myTens = ":ten:twenty:thirty:forty:fifty:sixty:seventy:eighty:ninety:hundred"
myTeens = ":eleven:twelve:thirteen:fourteen:fifteen:sixteen:seventeen: eighteen:nineteen"
allNumberWords = myUnits & myTens & myTeens & ":a:and:-:"

I’ve put them all in an order, so that 1–10 and the first ten words, so for a given word, say ‘three’, I can find it in the list, then if I count the number of colons to the left (3), I’ve converted from a word to a number.

Then 11–20 are the tens, to ‘thirty’ will generate 13, so I can subtract 10 and multiply by 10 to get the 30.

Then 21–29 are the teens (you can do the calculation as your homework!), and the final odds and ends are also needed, including the hyphen, which is a ‘word’ on its own as far as VBA is concerned.

Pick up the words into an array
To start simply, I assumed that the cursor was in the first word:

Set rng = Selection.range.Duplicate
rng.Expand wdWord
rng.MoveEnd wdWord, 8
Dim wd(8) As String
For i = 1 To 8
  thisWord = Trim(rng.Words(i))
  If InStr(allNumberWords, ":" & thisWord & ":") > 0 Then
    wd(i) = thisWord
    Debug.Print thisWord & " ";
  Else
    numWords = i - 1
    Exit For
  End If
Next i

The important learning elements are that the range, rng, starts as a zero-length range at the cursor.
	Set rng = Selection.range.Duplicate
Then we expand it to the whole of the current word
	rng.Expand wdWord
and then we load up the array, wd(), with the next eight words, one at a time:
	thisWord = Trim(rng.Words(i))
trimming off the trailing space.

Then if thisWord, with a colon added on each end, is in allNumberWords
	If InStr(allNumberWords, ":" & thisWord & ":") > 0 Then
Add it into the array
	wd(i) = thisWord
And so we can see what’s happening, we print it into the Immediate mode window of VBA:
    Debug.Print thisWord & " ";
and that line adds a space after it, then the semicolon at the end means don’t go down to a newline yet.

Having dropped off the end of the actual text-based number, we’ve got one too many words, so we take one off and jump out of the For-Next loop (OK, some say it’s bad programming technique; I say it works well!):
	numWords = i - 1
	Exit For

The Immediate mode window of VBA is opened from the View tab, or with Ctrl-G (see the screenshot below).

Find code numbers for each word
Dim n(8) As Integer
For i = 1 To numWords
  wdPos = InStr(allNumberWords, ":" & wd(i) & ":")
  leftWords = Left(allNumberWords, wdPos)
  n(i) = Len(leftWords) - Len(Replace(leftWords, ":", ""))
  Debug.Print n(i), wd(i)
Next

So we now make up an array of all the numWords numbers equivalent to the words.

First find the position where the word (with colons either end) appears in allNumberWords:
	wdPos = InStr(allNumberWords, ":" & wd(i) & ":")
Then pick up leftWords, the words upto but not including the first colon around our word:
	leftWords = Left(allNumberWords, wdPos)
then we work out how many colons there are getting the length of leftWords then subtracting the length of the string after replacing all the colons with nothing.
	n(i) = Len(leftWords) - Len(Replace(leftWords, ":", ""))

Here’s the output in Immediate mode for ‘three hundred and forty-two’:
[image: ]

Calculate the number of the text-based number
This has to be done by thinking of all the permutations and combinations of our list of number-words. And it has to be done by thinking carefully about what the different possibilities are for each of the numbers of words. Here are the possibles from the sample above (ignoring the pink ones as I went on to add those once I’d got the basics going), just giving one example of each logically different options:

One word: three, forty, sixteen
Two words: a hundred, one hundred
Three words: seventy-nine
Four words: two hundred and sixteen, two hundred and forty
Six words: three hundred and forty-two

There are five possible values of numWords, so we set up a Select Case of this form:
Select Case numWords
  Case 1

  Case 2

  Case 3

  Case 4

  Case 5

  Case 6

  Case Else

End Select

Then each of the calculations goes in the gap under each Case number:

Select Case numWords
  Case 1
    myResult = n(1)
    If n(1) > 10 Then myResult = 10 * (n(1) - 10)
    If n(1) > 20 Then myResult = n(1) - 10
  Case 2
    If n(2) <> 20 Then ' "hundred"
      Beep
      Exit Sub
    End If
    myResult = n(1) * 100
  Case 3
    If n(2) <> 32 Then ' hyphen
      Beep
      Exit Sub
    End If
    myResult = 10 * (n(1) - 10) + n(3)
  Case 4
    If n(2) <> 20 Then ' "hundred"
      Beep
      Exit Sub
    End If
    myResult = n(4)
    If n(4) > 10 Then myResult = 10 * (n(4) - 10)
    If n(4) > 20 Then myResult = n(4) - 10
    myResult = myResult + 100 * n(1)
  Case 5
    If n(2) <> 20 Then ' "hundred"
      Beep
      Exit Sub
    End If
    myResult = 100 * n(1) + 10 * (n(3) - 10) + n(5)
  Case 6
    If n(2) <> 20 Then ' "hundred"
      Beep
      Exit Sub
    End If
    myResult = 100 * n(1) + 10 * (n(4) - 10) + n(6)
  Case Else
      Beep
      Exit Sub
End Select
Debug.Print myResult
MsgBox myResult

I won’t go through them all, but for Case 1 we have:
	myResult = n(1)
	If n(1) > 10 Then myResult = 10 * (n(1) - 10)
	If n(1) > 20 Then myResult = n(1) - 10

This works by first assuming it’s a one to nine number: i.e. the number is just n(1). But then we say, yes but if the number is more than 10, it’s in the ten to ninety group. And then again if it’s >20 we say, no, it’s in the eleven to nineteen, and do the calculation you worked out for homework!

Hopefully, that’s enough for you to see basically how they work. Your next homework then is to work out how each of the calculations works.

Finally, I print the result in the Immediate mode and also in a MsgBox, so I can check that it works OK.

Type the number into the text
Now we need to type the number into the text, in place of the text-based number. This is done by the bits that are highlighted.

For i = 1 To 8
  thisWord = Trim(rng.Words(i))
  If InStr(allNumberWords, ":" & thisWord & ":") > 0 Then
    wd(i) = thisWord
    Debug.Print thisWord & " ";
    allWords = allWords & thisWord & " "
  Else
    numWords = i - 1
    Exit For
  End If
Next i

rng.MoveEnd wdWord, numWords - 9
rng.MoveEndWhile cset:=" ", Count:=wdBackward
rng.Select

Debug.Print
If wd(1) = "a" Then wd(1) = "one"

Dim n(8) As Integer
For i = 1 To numWords
  wdPos = InStr(allNumberWords, ":" & wd(i) & ":")
  leftWords = Left(allNumberWords, wdPos)
  n(i) = Len(leftWords) - Len(Replace(leftWords, ":", ""))
  Debug.Print n(i), wd(i)
Next

a = allWords
Select Case numWords
  Case 1
    myResult = n(1)
    If n(1) > 10 Then myResult = 10 * (n(1) - 10)
    If n(1) > 20 Then myResult = n(1) - 10
  Case 2
    If n(2) <> 20 Then ' "hundred"
      Beep
      Exit Sub
    End If
    myResult = n(1) * 100
  Case 3
    If n(2) <> 32 Then ' hyphen
      Beep
      Exit Sub
    End If
    myResult = 10 * (n(1) - 10) + n(3)
  Case 4
    If n(2) <> 20 Then ' "hundred"
      Beep
      Exit Sub
    End If
    myResult = n(4)
    If n(4) > 10 Then myResult = 10 * (n(4) - 10)
    If n(4) > 20 Then myResult = n(4) - 10
    myResult = myResult + 100 * n(1)
  Case 5
    If n(2) <> 20 Then ' "hundred"
      Beep
      Exit Sub
    End If
    myResult = 100 * n(1) + 10 * (n(3) - 10) + n(5)
  Case 6
    If n(2) <> 20 Then ' "hundred"
      Beep
      Exit Sub
    End If
    myResult = 100 * n(1) + 10 * (n(4) - 10) + n(6)
  Case Else
      Beep
      Exit Sub
End Select
Debug.Print myResult
rng.Delete
Selection.TypeText Text:=Trim(Str(myResult))
End Sub


In this code:
	rng.MoveEnd wdWord, numWords - 9
	rng.MoveEndWhile cset:=" ", Count:=wdBackward
	rng.Select
I can’t quite remember how/why the end of the range, rng, had to be moved forwards by numWords - 9 words (i.e. backwards since numWords is less than 9), but I used the rng.Select for debugging, to make the range visible, to make sure I’d got just the right words. (This numWords - 9 might even be an error, but I changed the method later, so we won’t worry about it.)

I also used
	rng.MoveEndWhile cset:=" ", Count:=wdBackward
to bring the selection (well, the range) back past the space.

Then we type the number in place of the range:
	rng.Delete
	Selection.TypeText Text:=Trim(Str(myResult))
Ah, but this only works of the rng is actually selected by rng.Select, because we’re using Selection to do the typing, i.e. type at the current cursor position.

Make it more user friendly
So far, this only works if the cursor is in the first word of the text-based number, but what we want is to allow the user to either put the cursor somewhere (anywhere) in the number or put the cursor anywhere to the left of the number. In that way, you can convert one number, then run the macro a second time without bothering to move the cursor.

So we check the word at the cursor and, if it’s not a valid number-word then we extend the range right until we do find a number-word – this then is the first word of the text-based number, and out conversion can proceed.

If, However, the first word i a number-word, we extend the range to the left until we overshoot and find a word that’s not a number-word. Then extend the right-hand end of the range to the end of the text-based number.

Do
  rng.MoveEnd wdWord, 1
  Debug.Print rng.Text
  thisWord = Trim(rng.Words(rng.Words.Count))
  If InStr("and-", thisWord) > 0 Then thisWord = "x"
Loop Until InStr(allNumberWords, ":" & thisWord & ":") > 0

rng.Collapse wdCollapseEnd
rng.MoveEnd wdWord, -1
Debug.Print rng.Text

gotStart = False
Do While gotStart = False
  rng.MoveStart wdWord, -1
  Debug.Print rng.Text
  If InStr(allNumberWords, ":" & Trim(rng.Words(1)) & ":") = 0 Then
    gotStart = True
    rng.MoveStart wdWord, 1
    gotStart = True
  End If
  DoEvents
Loop

gotEnd = False
Do While gotEnd = False
  rng.MoveEnd wdWord, 1
  lastWord = Trim(rng.Words(rng.Words.Count))
  If InStr(allNumberWords, ":" & lastWord & ":") = 0 Then
    gotEnd = True
    rng.MoveEnd wdWord, -1
  End If
  Debug.Print rng.Text
  DoEvents
Loop
If Trim(rng.Words(1)) = "and" Then rng.MoveStart wdWord, 1
allWords = rng.Text
numWords = rng.Words.Count


So that first block (yellow) is:
Extend the range right by one word.
	rng.MoveEnd wdWord, 1
Show the range in Imm. mode, 		
	Debug.Print rng.Text
Pick up the final word of the range,
	thisWord = Trim(rng.Words(rng.Words.Count))
To expand on that, I could have done it by using:
	numWords = rng.Words.Count
	rng.Words(numWords)
But instead, I did it as a single line

If this word is ‘a’, ‘an’, ‘and’ or ‘-’ then it might be just part of the ordinary text, so change it to ‘x’, so that we ignore it and check the following word.
	If InStr("and-", thisWord) > 0 Then thisWord = "x"
Keep going around this loop until we find a word that is in our list of number-words, allNumberWords.
 Loop Until InStr(allNumberWords, ":" & thisWord & ":") > 0

The unhighlighted section reduces the range to just the single number-word:
	rng.Collapse wdCollapseEnd
	rng.MoveEnd wdWord, -1



That next block (turquoise) is where we find the start of the text-based number (in case there was an ‘a’ for ‘a hundred’):

gotStart = False			We haven’t found the start yet.
Do While gotStart = False	As long as we’re not there yet...
  rng.MoveStart wdWord, -1	...extend the range left by one word

gotStart = False
Do While gotStart = False
If we haven’t found the start yet, extend the range one word left.
  rng.MoveStart wdWord, -1
  Debug.Print rng.Text
but if we find a word that’s not a number-word...
  If InStr(allNumberWords, ":" & Trim(rng.Words(1)) & ":") = 0 Then
we have found the start (in fact we’ve gone too far left), so...
    gotStart = True
move the start of the range one word to the right
    rng.MoveStart wdWord, 1
    gotStart = True
  End If
  DoEvents
Loop

The grey block extends the range, word by word, to the right, until it goes too far and includes a non-number-word, and then pulls back by one word.

A word of warning about Do Loops
Especially when you’re developing a macro, you do have to be careful with Do Loops. If you can the condition for ending the loop wrong, it will go into an infinite. Theoretically, you should be able to click Reset on the VBA toolbar. Unfortunately, Do Loops seem to be very ‘tight’ such that it’s sometimes impossible to escape, and... you did remember to save the macros before you did this trial run, didn’t you?

In my case, when I was developing this macro, no, I didn’t save it; VBA crashed, I had to restart it, and I lost the prgramming I had done! All I needed to do was press Ctrl-S within VBA before running the macro, and all would have been well.

The other precaution you can take is to add a DoEvents command into the loop. This means that every time through the loop, VBA ‘puts it head up’ to see if anything is happening; this means it should notice that you’ve clicked Reset (or clicked Ctrl-Break, if the cursor was in Word when you ran the macro).

A further warning about Do Loops
If, like me, you use loads of keystrokes to run your macros, it’s all too easy to initiate a macro when you didn’t intend to. So, suppose you launched this macro in a text where there weren’t any number words; it will keep looking, and at best you’ll have a long delay, but at worst Word will crash. For that reason, I decided to change the first Do Loop into a For Next loop:

gottaWord = False
For i = 1 To 50
  rng.MoveEnd wdWord, 1
  Debug.Print rng.Text
  thisWord = Trim(rng.Words(rng.Words.Count))
  If InStr("aand-", thisWord) = 0 And InStr(allNumberWords, _
       ":" & thisWord & ":") > 0 Then
    If Right(Trim(rng.Text), 6) = "no-one" Then
      gottaWord = False
    Else
      gottaWord = True
      Exit For
    End If
  End If
Next i
rng.Collapse wdCollapseEnd
rng.MoveEnd wdWord, -1
If gottaWord = False Then
  rng.Select
  Beep
  myTime = Timer
  Do
  Loop Until Timer > myTime + 0.2
  Beep
  Exit Sub
End If

This is essentially the same as the yellow block two pages back, but it uses a For Next loop (currently set to 50), so it doesn’t go on searching for ever if it can’t find a number-word. Instead, if it falls off the end of the loop, it does a double-Beep (yellow block). If it does find a number-word, it exits the For-Next loop (turquoise).

The other item I’ve added (green) was because, while preparing the video, the word ‘no-one’ came in the text in between one text-based number and the next, and it converted it to 216 or some such!

I haven’t explained some of the jiggery-pockery I used in the calculation section of the different numbers of words in the text-based number. They relate to the US versions of text-based numbers, e.g. ‘three hundred forty-two’ (five words) and ‘four hundred two’ (three words).

I also allowed for a missing hyphen, e.g. ‘forty two’ (two words). But for all other ‘odd’ situations, I just gave a beep and exited the macro.

Your homework is to work through the calculation code and see which bit does what:

Select Case numWords
  Case 1
    myResult = n(1)
    If n(1) > 10 Then myResult = 10 * (n(1) - 10)
    If n(1) > 20 Then myResult = n(1) - 10
  Case 2
    If n(2) = 20 Then ' "hundred"
      myResult = n(1) * 100
    Else
      myResult = 10 * (n(1) - 10) + n(2)
      If myResult < 21 Then
        Beep
        rng.Select
        Exit Sub
      End If
    End If
  Case 3
    myResult = 10 * (n(1) - 10) + n(3)
    If n(2) <> 32 Then ' hyphen
      If n(2) = 20 Then
        myResult = n(3) + 100 * n(1)
      Else
        Beep
        rng.Select
        Exit Sub
      End If
    End If
  Case 4
    If n(2) <> 20 Then ' "hundred"
      Beep
      rng.Select
      Exit Sub
    End If
    myResult = n(4)
    If n(4) > 10 Then myResult = 10 * (n(4) - 10)
    If n(4) > 20 Then myResult = n(4) - 10
    myResult = myResult + 100 * n(1)
  Case 5
    If n(2) <> 20 Then ' "hundred"
      Beep
      rng.Select
      Exit Sub
    End If
    myResult = 100 * n(1) + 10 * (n(3) - 10) + n(5)
  Case 6
    If n(2) <> 20 Then ' "hundred"
      Beep
      rng.Select
      Exit Sub
    End If
    myResult = 100 * n(1) + 10 * (n(4) - 10) + n(6)
  Case Else
      Beep
      rng.Select
      Exit Sub
End Select

That’s it for now. I hope some of this was useful!


Appendix 14 – Sample switch list

Here’s a copy of an individual user’s switch list. It’s mainly for MultiSwitch, but there are also section for use with CommentAddMenu, CharacterSwitch and FindInContext.






FIContext AS-F
main = "key"
near1 = "list"
near3 = ""
distance =12



H2O
H2O


h2
H2O

CO2
CO2


t
^p~^p^p

main
me


4
for

2
to

to
two

two
too

too
2

perfect it
PerfectIt

36
Word 365


ll
=lorem(5,10)

ee
=rand(5,10)

...
…

1
one

2
two

3
three

4
four

5
five

6
six .

(1)
1.

(2)
2.

(3)
3.

(4)
4.

(5)
5.

(6)
6.

@@@@
@@@@

<
<&H~>


(a)
1.

(b)
2.

(c)
3.

(d)
4.

(e)
5.

(f)
6.

a)
1.

b)
2.

c)
3.

d)
4.

e)
5.

f)
6.

@@@@
@@@@


i)
(a)

ii)
(b)

iii)
(c)

iv)
(d)

v)
(e)

@@@@
@@@@

i)
1.

ii)
2.

iii)
3.

iv)
4.

v)
5.

@@@@
@@@@

i.
1.

ii.2.
2.

iii.
3.

iv.
4.

v.
5.

@@@@
@@@@


vb
vertical bar

volts
! V

volt
! V

(i)
(a)

(i)
(1)

(ii)
(b)

(ii)
(2)

(iii)
(c)

(iii)
(3)

(iv)
(4)

(v)
(5)


On the contrary
By contrast

On the other hand
However

It
This

x
×

x
(×~)

xx
×

for
of

for example
such as

for example
e.g.

a
AccentAlyse

above
earlier

Accordingly,
So

Albeit
Although

albeit
although

accordingly,
so

ad hoc
occasional

adf
AuthorDateFormatter

additional
extra

Additional
Further

additionally
also

Additionally
Also

al
alphabetic

alp
alphabetically

allow to
allow us to

allowed
made it possible

allows
makes it possible

along
around

also
and

alternate
alternative

among
between

Among
Between

amount
number

amounts
numbers

and
or

analog
analogue

an
the

&
and

And
Also,

ap
Archive Publications

apo
apostrophe

applied
used

Apparently
Clearly

arc
archaeology~

are to
have to

are
is

as a result of
due to

as well as
and

as well
also

As well
Also

as
because

As
Because

assure
ensure

assured
ensured

Assure
Ensure

assuring
ensuring

assures
ensures

At last
Finally

atm
at the moment

au
automatically

aus
Australia

az
([a-zA-Z]{1,})

b
because

B
Because

be
because

becausr
because

before
earlier

Besides
Also

big
large
major

bo
Bordeaux

Britain
the UK

bt
By the way,

BT
By the way,

but
however,

But
However,

buy
by

ca
CapitAlyse

called
referred to as

can
may

capacitance
capacitive

cc
ChronologyChecker

clc
CitationListChecker 

cl
CitationLister 

ccc
CitationLister and CitationListChecker

certain
particular

ch
chapter

Ch.
Chapter

[bookmark: _Hlk55044963]Ch
Chapter

cha
character~

Chapter
Section

cheques
checks

cheque
check

ci
citations

cie
the Chartered Institute of Editing and Proofreading

cm
Christmas~

cn
Christian~

coma
!,

commence
start

commenced
started

commences
starts

commencing
starting

compliment
complement

complimented
complemented

compliments
complements

complimentary
complementary

comprise
consist

comprises
consists

comprised
composed

con
conference~

c
CopyTextSimple    

cv
CopyTextVerySimple

co
conference~

considers
might involve

cons
construction

Continual
Continuous

continual
continuous

Continually
Continuously

continually
continuously

Continuous
Continual

continuous
continual

Continuously
Continually

continuously
continually

c
CopyTextSimple

cv
CopyTextVerySimple

could
can

cp
(confidentiality permitting)

cr
cross references

cs
ClipStore

criteria
criterion

criterion
criteria

d
DocAlyse

d9
Donorcard99

degrees of freedom
DOFs

degree of freedom
DOF

degree
!°

degrees
!°

de
demonstrat

dem
demonstration

depending
dependent

df
DictaFRedit

dir
directory

di
Dictate

dic
dictation

dict
DictateExtra~

da
DictateExtra

dash
–

different
differing

differing
different

dm
DoMacro|

do
document

doc
documentation

dr
http://www.archivepub.co.uk/doctor

Due
Owing

due
owing

dummy
dummy

e.g.,
such as

E.g.
For example,

e.g.:
such as

e.g.
~such as

e.g.
~for example

eg
for example

eight
8

eighteen
18

eighteenth
18th

eighth
8th

eighties
1980s

eighty
80

eighty-eight
88

eighty-five
85

eighty-four
84

eighty-nine
89

eighty-one
81

eighty-seven
87

eighty-six
86

eighty-three
83

eighty-two
82

eleven
11

eleventh
11th

Else
Otherwise

else
otherwise

em
paul@archivepub.co.uk~

emw
paul@wordmacrotools.com

ewm
paul@wordmacrotools.com

em2
paulbev@livtech.co.uk

em3
archivepub@gmail.com

en
English

ep
English Plus

eq
equation

equation
Eq.

eqs
equations

Eq.
Equation

Equ.
Equation

Equation
Eq.

Eqs
Equations

Equations
Eqs

Eqs.
Equations

Eqns
Equations

Eqns.
Eqs

esl
English as a second language

etc.
and so on

et
editing tools

Exceptions
dummy

extra
further

exist
are

exists
is

f
FRedit

fb
Facebook

fa
facility

fast
quickly

fe
!, for example,

fewer
less

fi
find and replace

fifties
1950s

fifteen
15

fifteenth
15th

fifth
5th

fifty
50

fifty-eight
58

fifty-five
55

fifty-four
54

fifty-nine
59

fifty-one
51

fifty-seven
57

fifty-six
56

fifty-three
53

fifty-two
52

Figure
Fig.

Fig.
Figure

Figs.
Figures

Fig
Figure

filed
field

final
previous

five
5

fd
Flying Doctor approach

first
1st

fl
FRedit list~

fli
FRedit library~

fna
FullNameAlyse

for example
such as

form
from

Forward
Foreword

forties
1940s

forty
40

forty-eight
48

forty-five
45

forty-four
44

forty-nine
49

forty-one
41

forty-seven
47

forty-six
46

forty-three
43

forty-two
42

found
found to be

four
4

fourteen
14

fourteenth
14th

fourth
4th

fr
freelance

fre
http://www.archivepub.co.uk/documents/FRedit.zip

Fred it
FRedit

from
of

fs
FindSamePlace

fundamental
basic

g
Google

gc
grandchild

gd
granddaughter

gets
becomes

get
become

go
Gordon

got
obtained~

gp
Grandpa

great
large

h
HyphenAlyse

has
have

have
has

he
he’d

she
she’d

he/she
they

hence
therefore

hh
Hope that helps.

hi
highlight

high
large

higher
larger

his/her
their

his
their

ho
However, 

Ho
however, 

Holland
the Netherlands

however,
but~

however
but~

hth
Hope that helps.

hy
hyphenation

i.e.,
that is,

i.e.:
that is

i.e.
that is,

ie
that is

if
whether

whether
If so, that’s fine.

iff
If so, that’s fine.

im
intended meaning

include:
include the following:

including:
including the following:

inc
inconsistency

In addition to
As well as

in addition
also

In addition
Also

In case of
For

In the case that
When

In the case of
For

in the case of
for

in
information

inf
information

ins
instructions~

instance
example

inst
instantaneously~

instantaneously
instantly

instantly
instantaneously

is
are

is to
should
has to

IS
IStoIZ/IZtoIS

its
their

IZ
IStoIZ/IZtoIS

je
Jennifer

kb
keybindings

keeps
takes

keep
take

keeping
taking

kept
taken

knew
new

known
seen

ks
keystroke

l
LaTeX

la
language

large
major

large
high

last
past

lately
recently

latter
last

lay
lie

lays
lies

lb
Love and best wishes,

lead
led

less
fewer

less
fewer

licence
license

licences
licenses

licencing
licensing

license
licence

licenses
licences

Like
As with

like
such as

likely
probably

little
small

loose
lose

looses
loses

loosing
losing

lo
Louise

lower
less

m
MultiSwitch 

manner
way

Many times
Often

maximal
maximum

may
can

ma
MegAlyse

me
macro editing tools

mc
http://wordmacrotools.com/macros/

mf
MacroFetch

mfu
MacroFetchUpdate

mft
MultiFileText

mfw
MultiFileWord 

might
could

mi
MacroInstaller

mime
mimic

mio
million

media
medium

mr
MegaReplacer 

mtt
macro tools

mmm
https://www.wordmacrotools.com/pdfs/08_Macro_Menu__complete_macro_tool_list.pdf

mt
Many thanks.

mtrr
http://www.archivepub.co.uk/documents/Macros_by_the_tourist_route

mtr
Macros by the Tourist Route

might
may

minimal
minimum

mob
07780-917589

monotonously
monotonically

ms
Microsoft

msp
Macro Starter Pack

mt
Many thanks.

much
very

must
has to

named
referred to as

nd
Nightingale Drive

needed
necessary

next
following

nevertheless
but

ni
Nightingale Drive

nine
9

nineteen
19

nineteenth
19th

nineth
9th

ninth
9th

nineties
1990s

ninety
90

ninety-eight
98

ninety-five
95

ninety-four
94

ninety-nine
99

ninety-one
91

ninety-seven
97

ninety-six
96

ninety-three
93

ninety-two
92

NONE
ALL

ALL
NONE

nt
Normal template

number
figure

numbers
figures

obviously
markedly

ob
obsessive problem-solver

obtained
obtained by

obtained
acquired

oc
of course

of
to

ohm
! Ω

ohms
! Ω

on
to

|one
we

one should
we have to

one must
we have to

one must
it is necessary to

one has
we have

one may
we can

operation
operating

optimal
optimum

Owing to
As a result of

owing
due

p
ProperNounAlyse

pa
paragraph

par
parentheses

passive
positive

past
final

pb
Paul Beverley

pe
pre-editors

per annum
!/year

per cent
!%

percent
!%

permits
allows

pf
proofreading

phenomenon
phenomena

pi
PerfectIt

pm
proper minus sign~

pn
proper nouns

pov
point of view

pp
Powerpoint

pr
proofreader

practice
practise

principal
principle

principals
principles

principle
principal

providing
provided

program
programme

programs
programmes

proper
appropriate

ps
PostScript

pub
http://www.archivepub.co.uk

pu
punctuation

pv
principal verb

qm
quotation mark

qu
queries

quickly
rapidly

quite
fairly

r
respectively

rc
ReferenceChecker

re
[bookmark: _Hlk39292512]reference

referred to as
called

rel
relationship

ri
RISC OS

rl
references list

s
CIEP

sb
suebev3@gmail.com

sc
screencast

sp
spellcheck

se
sentence

sel
SpellingErrorLister

seh
SpellingErrorHighlighter

second
2nd

Section
Chapter

Section
Subsection

since
because

seven
7

seventeen
17

seventeenth
17th

seventh
7th

seventies
1970s

seventy
70

seventy-eight
78

seventy-five
75

seventy-four
74

seventy-nine
79

seventy-one
71

seventy-seven
77

seventy-six
76

seventy-three
73

seventy-two
72

six
6

sixteen
16

sixth
6th

sixteenth
16th

sixties
1960s

sixty
60

sixty-eight
68

sixty-five
65

sixty-four
64

sixty-nine
69

sixty-one
61

sixty-six
66

sixty-seven
67

sixty-three
63

sixty-two
62

sf
straightforward

sfe
http://www.sfep.org.uk

sss
SpellingErrorLister and SpellingErrorHighlighter

sh
SpellingErrorHighlighter

should be
has to be

shall
will
must
has to
have to

shall
have to

shall
will

sl
SpellingErrorLister

str
strikethrough

structure
structural

so
therefore

so
thus

software
software packages

spa
Starter Pack

square feet
sq.ft

ss
stylesheet

st
straightaway

storeys
stories

structure health monitoring
SHM

structural health monitoring
SHM

sub
subscript

such as
for example

such as
as with

such
this

Such
This

sup
superscript~

sw
software

ta
Thanks again.

take
such as

Taylor
tailor

tb
http://www.archivepub.co.uk/book

tm
http://www.archivepub.co.uk/macros/

tc
track change~

the
a

there
their

three
3

two
2

tr
training

tra
translators

true
real

tt
Many thanks

tu
turquoise

tv
Taverham

twelve
12

twelfth
12th

twenties
1920s

twentieth
20th

twenty
20

twenty-eight
28

twenty-first
21st

twenty-five
25

twenty-four
24

twenty-nine
29

twenty-one
21

twenty-seven
27

twenty-six
26

twenty-three
23

twenty-two
22

two
2

ty
typesetting

tyr
typesetter

un
Unfortunately, 

under
at

Un
Unfortunately, 

undated
n.d.

United Kingdom
UK

United States
USA

U.S.
US

usage
use

utilised
used

utilise
use

utilises
uses

utilising
using

utilized
used

utilize
use

utilizes
uses

utilizing
using

varying
various

varied
various

via
vs.

w
WordPairAlyse

wa
WhatsApp

was
were

way
direction

wc
wildcard

well
easily

were
was

what
which

when
where

weather
whether

, which
 that

that
which

that
which

which
that

Which
This

Where
We’re

Weather
Whether

where
we’re

wi
window

Wi
Windows

will stop
!.

will
must

with
to

would be
is

wop
WordPress

would
will

wp
wordprocessor

wpc
WordsPhrasesInContext

x
×

y
YouTube

you
we

You
We

yt
https://www.youtube.com/channel/UC6J6ZPMJQ0T5eMIcX3tKh2g

°
 degrees

09
([0-9]{1,})

07
07780-917589

1st
first

2nd
second

3
III

3rd
third

4
IV

4th
fourth

5th
fifth

68
01362-680019

6th
sixth

72
01603-722544

7th
seventh

86
01603-864 464

8th
eighth

9
([0-9])

A
([A-Z])

a
([a-z])

a1
([a-z]{1,})

9th
ninth

zz
zzSwitchList

46
[bookmark: _Hlk40956916]46 Nightingale Drive, Taverham^tNR8 6TR
46 Nightingale Drive,^pTaverham,^pNorwich^pNR8 6TR^p
46 Nightingale Drive,^pNorwich^pNR8 6TR^p
Archive Publications, 46 Nightingale Drive, Norwich NR8 6TR, UK




Quick-find word changes
<Alt-1>
this is just my “numbers” (both ways!) macro, really,
plus I use it for US to USA

US>USA
twenty>0
thirty>30
forty>40
fifty>50
sixty>60
seventy>70
eighty>80
ninety>90




checkForeign1 = F
foreignLanguage1 = opposite
checkForeign2 = F
foreignLanguage2 = wdFrench

makeFReditList = F



List:

<Cap>
<

.^p
 here>^p


[g] ‘<>’ is not defined in the glossary.{Not in glossary.}
.[t] ‘<>’ does not appear in this chapter. OK?{Not in chapter.}
[bookmark: _Hlk50366835][l] ‘<>’ is not in the references list. {Not in the references list.}
[bookmark: _Hlk50365915][ll] ‘<>’ is not in the references list. (But ][ is.) {Not in the references list. But xxx is.}
[bookmark: _Hlk45009567][h] ‘<>’ – Have I caught the intended meaning?{Have I caught meaning?}
[bookmark: _Hlk64877590][m] ‘<>’ – I’m having difficulty working out what this means. What does “<>” mean? {Meaning?}
[rr] ‘<>’ – Will readers know what ‘][’ refers to? If so, that’s fine. {Readers know?}
[a] ‘<>’ – Will the readers know this acronym? If so, fine. (It’s not defined anywhere that I can see.) {Acronym}
[s] ‘<>’ – Sorry, but I can’t work out the intended meaning here. Is it something like “<>”? {Sorry?}
[3] OK?{OK?}
[bookmark: _Hlk50367253][c] Doesn’t seem to be cited in the text. {Not cited}
[v] ‘<>’ – This sentence has no principal verb, so I can’t work out the meaning, sorry. {No verb}
[t] ‘<>’ – Does not appear in the text of this chapter. OK? {No verb}
[q] ‘<>’ –  {Quote only}
[bookmark: _Hlk50524828]['] ‘<>’ –  {Quote only}
[bookmark: _Hlk55223450][.] ‘<>’ –  {Quote only}
[0] {Blank}
[t] [T/S: Please ensure that the bold characters here are just bold and NOT bold-italic.] {T/S comment}
[tt] [T/S: ditto] {T/S}









<age>
<Age>

Figure
Table
Equation
Eqn
¬chapter
¬section
Eqn
Eqns
¬chapter
¬chapters
¬section
¬sections

Context words:
place



Quick-find character changes
 <Alt-Num+>
<Alt-2>
(long range)
°_ degrees
%_ per cent
and this autochanges to ‘percent’ if lang = US

;_ and
&_and
x_×
z_s
Quotes: single to double and vice versa
‘_“
’_”
”_’
“_‘
+_ + 
em dash to en dash
^+_^=
en dash to hyphen
^=_-
hyphen to (spaced) en dash
-_ ^=^32

/_and

2003

wm
wordmacrotools.com

wmt
Word Macro Tools~

see iep
CIEP

iep
CIEP

ws
worksheet

doc allies
DocAlyse




182

image1.png

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.jpeg

image13.jpeg

image14.jpeg

image15.png

image16.png

image17.jpeg

image18.jpeg

image19.png

image20.jpeg

image21.jpeg

image22.jpeg

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.png

image30.png

image31.png

image32.png

image33.png

image34.png

